11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanisms of Adiponectin Action: Implication of Adiponectin Receptor Agonism in Diabetic Kidney Disease

      review-article
      1 , 1 , 2 , *
      International Journal of Molecular Sciences
      MDPI
      adiponectin, metabolism, AdipoRon, lipotoxicity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adiponectin, an adipokine secreted by adipocytes, exerts favorable effects in the milieu of diabetes and metabolic syndrome through its anti-inflammatory, antifibrotic, and antioxidant effects. It mediates fatty acid metabolism by inducing AMP-activated protein kinase (AMPK) phosphorylation and increasing peroxisome proliferative-activated receptor (PPAR)-α expression through adiponectin receptor (AdipoR)1 and AdipoR2, respectively, which in turn activate PPAR gamma coactivator 1 alpha (PGC-1α), increase the phosphorylation of acyl CoA oxidase, and upregulate the uncoupling proteins involved in energy consumption. Moreover, adiponectin potently stimulates ceramidase activity associated with its two receptors and enhances ceramide catabolism and the formation of its anti-apoptotic metabolite, sphingosine 1 phosphate (S1P), independently of AMPK. Low circulating adiponectin levels in obese patients with a risk of insulin resistance, type 2 diabetes, and cardiovascular diseases, and increased adiponectin expression in the state of albuminuria suggest a protective and compensatory role for adiponectin in mitigating further renal injury during the development of overt diabetic kidney disease (DKD). We propose AdipoRon, an orally active synthetic adiponectin receptor agonist as a promising drug for restoration of DKD without inducing systemic adverse effects. Its renoprotective role against lipotoxicity and oxidative stress by enhancing the AMPK/PPARα pathway and ceramidase activity through AdipoRs is revealed here.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.

          Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade

            Background The AMP-activated protein kinase (AMPK) cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs) that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β. Results We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1), but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos. Conclusions These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity.

              Adiponectin secreted from adipocytes binds to adiponectin receptors AdipoR1 and AdipoR2, and exerts antidiabetic effects via activation of AMPK and PPAR-α pathways, respectively. Levels of adiponectin in plasma are reduced in obesity, which causes insulin resistance and type 2 diabetes. Thus, orally active small molecules that bind to and activate AdipoR1 and AdipoR2 could ameliorate obesity-related diseases such as type 2 diabetes. Here we report the identification of orally active synthetic small-molecule AdipoR agonists. One of these compounds, AdipoR agonist (AdipoRon), bound to both AdipoR1 and AdipoR2 in vitro. AdipoRon showed very similar effects to adiponectin in muscle and liver, such as activation of AMPK and PPAR-α pathways, and ameliorated insulin resistance and glucose intolerance in mice fed a high-fat diet, which was completely obliterated in AdipoR1 and AdipoR2 double-knockout mice. Moreover, AdipoRon ameliorated diabetes of genetically obese rodent model db/db mice, and prolonged the shortened lifespan of db/db mice on a high-fat diet. Thus, orally active AdipoR agonists such as AdipoRon are a promising therapeutic approach for the treatment of obesity-related diseases such as type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                10 April 2019
                April 2019
                : 20
                : 7
                : 1782
                Affiliations
                [1 ]Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul 06591, Korea; yaenikim82@ 123456gmail.com
                [2 ]Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
                Author notes
                [* ]Correspondence: cheolwhee@ 123456hanmail.net ; Tel.: +82-2-2258-6038; Fax: +82-2-599-3589
                Article
                ijms-20-01782
                10.3390/ijms20071782
                6480391
                30974901
                257ae097-1490-4e21-b8fc-1d5d1c19818c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 February 2019
                : 08 April 2019
                Categories
                Review

                Molecular biology
                adiponectin,metabolism,adiporon,lipotoxicity
                Molecular biology
                adiponectin, metabolism, adiporon, lipotoxicity

                Comments

                Comment on this article