+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The administration of mesenchymal stem cells (MSCs) as a therapy for liver disease holds great promise. MSCs can differentiate into hepatocytes, reduce liver inflammation, promote hepatic regeneration and secrete protective cytokines. However, the risks of iatrogenic tumor formation, cellular rejection and infusional toxicity in MSC transplantation remain unresolved. Accumulating evidence now suggests that a novel cell-free therapy, MSC-secreted exosomes, might constitute a compelling alternative because of their advantages over the corresponding MSCs. They are smaller and less complex than their parent cells and, thus, easier to produce and store, they are devoid of viable cells, and they present no risk of tumor formation. Moreover, they are less immunogenic than their parent cells because of their lower content in membrane-bound proteins. This paper reviews the biogenesis of MSC exosomes and their physiological functions, and highlights the specific biochemical potential of MSC-derived exosomes in restoring tissue homeostasis. In addition, we summarize the recent advances in the role of exosomes in MSC therapy for various liver diseases, including liver fibrosis, acute liver injury and hepatocellular carcinoma. This paper also discusses the potential challenges and strategies in the use of exosome-based therapies for liver disease in the future.

          Related collections

          Most cited references 62

          • Record: found
          • Abstract: found
          • Article: not found

          Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis.

          Exosomes are naturally occurring biological nanovesicles utilized by tumors to communicate signals to local and remote cells and tissues. Melanoma exosomes can incite a proangiogenic signaling program capable of remodeling tissue matrices. In this study, we show exosome-mediated conditioning of lymph nodes and define microanatomic responses that license metastasis of melanoma cells. Homing of melanoma exosomes to sentinel lymph nodes imposes synchronized molecular signals that effect melanoma cell recruitment, extracellular matrix deposition, and vascular proliferation in the lymph nodes. Our findings highlight the pathophysiologic role and mechanisms of an exosome-mediated process of microanatomic niche preparation that facilitates lymphatic metastasis by cancer cells.
            • Record: found
            • Abstract: found
            • Article: not found

            Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes.

            Association of major histocompatibility complex (MHC) class II molecules with peptides occurs in a series of endocytic vacuoles, termed MHC class II-enriched compartments (MIICs). Morphological criteria have defined several types of MIICs, including multivesicular MIICs, which are composed of 50-60-nm vesicles surrounded by a limiting membrane. Multivesicular MIICs can fuse with the plasma membrane, thereby releasing their internal vesicles into the extracellular space. The externalized vesicles, termed exosomes, carry MHC class II and can stimulate T-cells in vitro. In this study, we show that exosomes are enriched in the co-stimulatory molecule CD86 and in several tetraspan proteins, including CD37, CD53, CD63, CD81, and CD82. Interestingly, subcellular localization of these molecules revealed that they were concentrated on the internal membranes of multivesicular MIICs. In contrast to the tetraspans, other membrane proteins of MIICs, such as HLA-DM, Lamp-1, and Lamp-2, were mainly localized to the limiting membrane and were hardly detectable on the internal membranes of MIICs nor on exosomes. Because internal vesicles of multivesicular MIICs are thought to originate from inward budding of the limiting membrane, the differential distribution of membrane proteins on the internal and limiting membranes of MIICs has to be driven by active protein sorting.
              • Record: found
              • Abstract: found
              • Article: not found

              Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.

              Dendritic cells (DCs) are professional antigen presenting cells with the unique capacity to induce primary and secondary immune responses in vivo. Here, we show that DCs secrete antigen presenting vesicles, called exosomes, which express functional Major Histocompatibility Complex class I and class II, and T-cell costimulatory molecules. Tumor peptide-pulsed DC-derived exosomes prime specific cytotoxic T lymphocytes in vivo and eradicate or suppress growth of established murine tumors in a T cell-dependent manner. Exosome-based cell-free vaccines represent an alternative to DC adoptive therapy for suppressing tumor growth.

                Author and article information

                Exp Mol Med
                Exp. Mol. Med
                Experimental & Molecular Medicine
                Nature Publishing Group
                June 2017
                16 June 2017
                1 June 2017
                : 49
                : 6
                : e346
                [1 ]State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, China
                [2 ]Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , Hangzhou, China
                Author notes
                [* ]State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University , 79# Qingchun Road, 6A-17, Hangzhou 310003, China. E-mail: liuyanning@ 123456zju.edu.cn
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/


                Molecular medicine


                Comment on this article