12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Neuropeptides as Pleiotropic Modulators of the Immune Response

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although necessary to eliminate pathogens, inflammation can lead to serious deleterious effects in the host if left unchecked. During the inflammatory response, further damage may arise from potential autoimmune responses occurring when the immune cells and molecules that respond to pathogen-derived antigens also react to self-antigens. In this sense, the identification of endogenous factors that control exacerbated immune responses is a key goal for the development of new therapeutic approaches for inflammatory and autoimmune diseases. Some neuropeptides that are produced during the ongoing inflammatory response have emerged as endogenous anti-inflammatory agents that could collaborate in tuning the balanced steady state of the immune system. These neuropeptides participate in maintaining immune tolerance through two distinct mechanisms: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T cell effectors. Indeed, a functioning neuropeptide system contributes to general health, and alterations in the levels of these neuropeptides and/or their receptors lead to changes in susceptibility to inflammatory and autoimmune diseases. Recently, we found that some neuropeptides also have antimicrobial and antiparasitic actions, suggesting that they could act as primary mediators of innate defense, even in the most primitive organisms. In this review, we use the vasoactive intestinal peptide as example of an immunomodulatory neuropeptide to summarize the most relevant data found for other neuropeptides with similar characteristics, including adrenomedullin, urocortin, cortistatin and ghrelin.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Points of control in inflammation.

          Inflammation is a complex set of interactions among soluble factors and cells that can arise in any tissue in response to traumatic, infectious, post-ischaemic, toxic or autoimmune injury. The process normally leads to recovery from infection and to healing, However, if targeted destruction and assisted repair are not properly phased, inflammation can lead to persistent tissue damage by leukocytes, lymphocytes or collagen. Inflammation may be considered in terms of its checkpoints, where binary or higher-order signals drive each commitment to escalate, go signals trigger stop signals, and molecules responsible for mediating the inflammatory response also suppress it, depending on timing and context. The non-inflammatory state does not arise passively from an absence of inflammatory stimuli; rather, maintenance of health requires the positive actions of specific gene products to suppress reactions to potentially inflammatory stimuli that do not warrant a full response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens.

            The central nervous system (CNS) regulates innate immune responses through hormonal and neuronal routes. The neuroendocrine stress response and the sympathetic and parasympathetic nervous systems generally inhibit innate immune responses at systemic and regional levels, whereas the peripheral nervous system tends to amplify local innate immune responses. These systems work together to first activate and amplify local inflammatory responses that contain or eliminate invading pathogens, and subsequently to terminate inflammation and restore host homeostasis. Here, I review these regulatory mechanisms and discuss the evidence indicating that the CNS can be considered as integral to acute-phase inflammatory responses to pathogens as the innate immune system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulatory T cells: friend or foe in immunity to infection?

              Homeostasis in the immune system depends on a balance between the responses that control infection and tumour growth and the reciprocal responses that prevent inflammation and autoimmune diseases. It is now recognized that regulatory T cells have a crucial role in suppressing immune responses to self-antigens and in preventing autoimmune diseases. Evidence is also emerging that regulatory T cells control immune responses to bacteria, viruses, parasites and fungi. This article explores the possibility that regulatory T cells can be both beneficial to the host, through limiting the immunopathology associated with anti-pathogen immune responses, and beneficial to the pathogen, through subversion of the protective immune responses of the host.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2011
                September 2011
                07 July 2011
                : 94
                : 2
                : 89-100
                Affiliations
                Instituto de Parasitologia y Biomedicina ‘Lopez-Neyra’, Consejo Superior de Investigaciones Cientificas, Granada, Spain
                Author notes
                *Elena Gonzalez-Rey, Instituto de Parasitologia y Biomedicina ‘López-Neyra’, Consejo Superior de Investigaciones Cientificas, Avd/Conocimiento, PT Ciencias de La Salud, ES–18100 Granada (Spain), Tel. +34 958 181 670, E-Mail elenag@ipb.csic.es
                Article
                328636 Neuroendocrinology 2011;94:89–100
                10.1159/000328636
                21734355
                2596d22f-0813-4e1b-acf9-78494e6cee69
                © 2011 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 11 February 2011
                : 17 April 2011
                Page count
                Figures: 3, Tables: 1, Pages: 12
                Categories
                At the Cutting Edge

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Tolerance,Inflammation,Trypanocidal agent,Neuropeptide,Autoimmunity,Parasites

                Comments

                Comment on this article