33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flax Fiber Hydrophobic Extract Inhibits Human Skin Cells Inflammation and Causes Remodeling of Extracellular Matrix and Wound Closure Activation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inflammation is the basis of many diseases, with chronic wounds amongst them, limiting cell proliferation and tissue regeneration. Our previous preclinical study of flax fiber applied as a wound dressing and analysis of its components impact on the fibroblast transcriptome suggested flax fiber hydrophobic extract use as an anti-inflammatory and wound healing preparation. The extract contains cannabidiol (CBD), phytosterols, and unsaturated fatty acids, showing great promise in wound healing. In in vitro proliferation and wound closure tests the extract activated cell migration and proliferation. The activity of matrix metalloproteinases in skin cells was increased, suggesting activation of extracellular components remodeling. The expression of cytokines was diminished by the extract in a cannabidiol-dependent manner, but β-sitosterol can act synergistically with CBD in inflammation inhibition. Extracellular matrix related genes were also analyzed, considering their importance in further stages of wound healing. The extract activated skin cell matrix remodeling, but the changes were only partially cannabidiol- and β-sitosterol-dependent. The possible role of fatty acids also present in the extract is suggested. The study shows the hydrophobic flax fiber components as wound healing activators, with anti-inflammatory cannabidiol acting in synergy with sterols, and migration and proliferation promoting agents, some of which still require experimental identification.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Isolation, Structure, and Partial Synthesis of an Active Constituent of Hashish

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Keratinocyte-fibroblast interactions in wound healing.

            Cutaneous tissue repair aims at restoring the barrier function of the skin. To achieve this, defects need to be replaced by granulation tissue to form new connective tissue, and epithelial wound closure is required to restore the physical barrier. Different wound-healing phases are recognized, starting with an inflammation-dominated early phase giving way to granulation tissue build-up and scar remodeling after epithelial wound closure has been achieved. In the granulation tissue, mesenchymal cells are maximally activated, cells proliferate, and synthesize huge amounts of extracellular matrix. Epithelial cells also proliferate and migrate over the provisional matrix of the underlying granulation tissue, eventually closing the defect. This review focuses on the role of keratinocyte-fibroblast interactions in the wound-healing process. There is ample evidence that keratinocytes stimulate fibroblasts to synthesize growth factors, which in turn will stimulate keratinocyte proliferation in a double paracrine manner. Moreover, fibroblasts can acquire a myofibroblast phenotype under the control of keratinocytes. This depends on a finely tuned balance between a proinflammatory or a transforming growth factor (TGF)-beta-dominated environment. As the phenotype of fibroblasts from different tissues or body sites becomes better defined, we may understand their individual contribution in wound healing in more detail and possibly explain different clinical outcomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays.

              Cell migration plays a major role in development, physiology, and disease, and is frequently evaluated in vitro by the monolayer wound healing assay. The assay analysis, however, is a time-consuming task that is often performed manually. In order to accelerate this analysis, we have developed TScratch, a new, freely available image analysis technique and associated software tool that uses the fast discrete curvelet transform to automate the measurement of the area occupied by cells in the images. This tool helps to significantly reduce the time needed for analysis and enables objective and reproducible quantification of assays. The software also offers a graphical user interface which allows easy inspection of analysis results and, if desired, manual modification of analysis parameters. The automated analysis was validated by comparing its results with manual-analysis results for a range of different cell lines. The comparisons demonstrate a close agreement for the vast majority of images that were examined and indicate that the present computational tool can reproduce statistically significant results in experiments with well-known cell migration inhibitors and enhancers.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                4 August 2015
                : 2015
                : 862391
                Affiliations
                1Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
                2Institute of Genetics and Microbiology, Faculty of Biological Sciences, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
                3Linum Foundation, Stablowicka 147/149, 54-066 Wroclaw, Poland
                4Institute of Genetics and Microbiology, Department of Pathogen Biology and Immunology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
                5Department of Food Science and Nutrition, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
                6Department of Genetics, Plant Breeding and Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Plant Sciences, Plac Grunwaldzki 24A, 53-363 Wroclaw, Poland
                Author notes

                Academic Editor: Wen-Bin Wu

                Article
                10.1155/2015/862391
                4539444
                26347154
                259b67ee-aeb9-48f5-9f14-4aa94f104a15
                Copyright © 2015 Monika Styrczewska et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 December 2014
                : 30 March 2015
                : 10 April 2015
                Categories
                Research Article

                Comments

                Comment on this article