7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhancing Microgrid Performance Prediction with Attention-based Deep Learning Models

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this research, an effort is made to address microgrid systems' operational challenges, characterized by power oscillations that eventually contribute to grid instability. An integrated strategy is proposed, leveraging the strengths of convolutional and Gated Recurrent Unit (GRU) layers. This approach is aimed at effectively extracting temporal data from energy datasets to improve the precision of microgrid behavior forecasts. Additionally, an attention layer is employed to underscore significant features within the time-series data, optimizing the forecasting process. The framework is anchored by a Multi-Layer Perceptron (MLP) model, which is tasked with comprehensive load forecasting and the identification of abnormal grid behaviors. Our methodology underwent rigorous evaluation using the Micro-grid Tariff Assessment Tool dataset, with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (r2-score) serving as the primary metrics. The approach demonstrated exemplary performance, evidenced by a MAE of 0.39, RMSE of 0.28, and an r2-score of 98.89\% in load forecasting, along with near-perfect zero state prediction accuracy (approximately 99.9\%). Significantly outperforming conventional machine learning models such as support vector regression and random forest regression, our model's streamlined architecture is particularly suitable for real-time applications, thereby facilitating more effective and reliable microgrid management.

          Related collections

          Author and article information

          Journal
          20 July 2024
          Article
          2407.14984
          25a0c3a6-7c46-4a0e-b551-9c015bfaeb79

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          2024 11th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE)
          cs.LG cs.AI cs.SY eess.SY

          Performance, Systems & Control,Artificial intelligence
          Performance, Systems & Control, Artificial intelligence

          Comments

          Comment on this article