+1 Recommend
2 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The conundrum of colonization resistance against Campylobacter reloaded: The gut microbota composition in conventional mice does not prevent from Campylobacter coli infection


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The physiological colonization resistance exerted by the murine gut microbiota prevents conventional mice from Campylobacter jejuni infection. In the present study we addressed whether this also held true for Campylobacter coli. Following peroral application, C. coli as opposed to C. jejuni could stably establish within the gastrointestinal tract of conventionally colonized mice until 3 weeks post-challenge. Neither before nor after either Campylobacter application any changes in the gut microbiota composition could be observed. C. coli, but not C. jejuni challenge was associated with pronounced regenerative, but not apoptotic responses in colonic epithelia. At day 21 following C. coli versus C. jejuni application mice exhibited higher numbers of adaptive immune cells including T-lymphocytes and regulatory T-cells in the colonic mucosa and lamina propria that were accompanied by higher large intestinal interferon-γ (IFN-γ) concentrations in the former versus the latter but comparable to naive levels. Campylobacter application resulted in decreased splenic IFN-γ, tumor necrosis factor-α (TNF-α), and IL-6 concentrations, whereas IL-12p70 secretion was increased in the spleens at day 21 following C. coli application only. In either Campylobacter cohort decreased IL-10 concentrations could be measured in splenic and serum samples. In conclusion, the commensal gut microbiota prevents mice from C. jejuni, but not C. coli infection.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Campylobacter jejuni: molecular biology and pathogenesis.

          Campylobacter jejuni is a foodborne bacterial pathogen that is common in the developed world. However, we know less about its biology and pathogenicity than we do about other less prevalent pathogens. Interest in C. jejuni has increased in recent years as a result of the growing appreciation of its importance as a pathogen and the availability of new model systems and genetic and genomic technologies. C. jejuni establishes persistent, benign infections in chickens and is rapidly cleared by many strains of laboratory mouse, but causes significant inflammation and enteritis in humans. Comparing the different host responses to C. jejuni colonization should increase our understanding of this organism.
            • Record: found
            • Abstract: found
            • Article: not found

            Gram-negative bacteria aggravate murine small intestinal Th1-type immunopathology following oral infection with Toxoplasma gondii.

            Oral infection of susceptible mice with Toxoplasma gondii results in Th1-type immunopathology in the ileum. We investigated gut flora changes during ileitis and determined contributions of gut bacteria to intestinal inflammation. Analysis of the intestinal microflora revealed that ileitis was accompanied by increasing bacterial load, decreasing species diversity, and bacterial translocation. Gram-negative bacteria identified as Escherichia coli and Bacteroides/Prevotella spp. accumulated in inflamed ileum at high concentrations. Prophylactic or therapeutic administration of ciprofloxacin and/or metronidazole ameliorated ileal immunopathology and reduced intestinal NO and IFN-gamma levels. Most strikingly, gnotobiotic mice in which cultivable gut bacteria were removed by quintuple antibiotic treatment did not develop ileitis after Toxoplasma gondii infection. A reduction in total numbers of lymphocytes was observed in the lamina propria of specific pathogen-free (SPF), but not gnotobiotic, mice upon development of ileitis. Relative numbers of CD4(+) T cells did not differ in naive vs infected gnotobiotic or SPF mice, but infected SPF mice showed a significant increase in the frequencies of activated CD4(+) T cells compared with gnotobiotic mice. Furthermore, recolonization with total gut flora, E. coli, or Bacteroides/Prevotella spp., but not Lactobacillus johnsonii, induced immunopathology in gnotobiotic mice. Animals recolonized with E. coli and/or total gut flora, but not L. johnsonii, showed elevated ileal NO and/or IFN-gamma levels. In conclusion, Gram-negative bacteria, i.e., E. coli, aggravate pathogen-induced intestinal Th1-type immunopathology. Thus, pathogen-induced acute ileitis may prove useful to study bacteria-host interactions in small intestinal inflammation and to test novel therapies based on modulation of gut flora.
              • Record: found
              • Abstract: found
              • Article: not found

              MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease.

              The bacterial microflora aggravates graft-versus-host-disease (GvHD) after allogeneic stem cell transplantation, but the underlying mechanisms of manifestations of intestinal GvHD (iGvHD) in the gut remain poorly understood. To analyse the gut flora composition and the impact of bacterial sensing via Toll-like receptors (TLRs) in iGvHD. By mimicking clinical low-intensity conditioning regimens used in humans, a novel irradiation independent, treosulfan and cyclophosphamide-based murine allogeneic transplantation model was established. A global survey of the intestinal microflora by cultural and molecular methods was performed, the intestinal immunopathology in TLR-deficient recipient mice with iGvHD investigated and finally, the impact of anti-TLR9 treatment on iGvHD development assessed. The inflammatory responses in iGvHD were accompanied by gut flora shifts towards enterobacteria, enterococci and Bacteroides/Prevotella spp. Analysis of iGvHD in MyD88(-/-), TRIF(-/-), TLR2/4(-/-), and TLR9(-/-) recipient mice showed that bacterial sensing via TLRs was essential for iGvHD development. Acute iGvHD was characterised by increasing numbers of apoptotic cells, proliferating cells, T cells and neutrophils within the colon. These responses were significantly reduced in MyD88(-/-), TLR2/4(-/-), TRIF(-/-) and TLR9(-/-) mice, as compared with wild-type controls. However, TRIF(-/-) and TLR2/4(-/-) mice were not protected from mortality, whereas TLR9(-/-) mice displayed increased survival rates. The important role of TLR9-mediated immunopathology was independently confirmed by significantly reduced macroscopic disease symptoms and colonic apoptosis as well as by reduced T-cell and neutrophil numbers within the colon after treatment with a synthetic inhibitory oligonucleotide. These results emphasise the critical role of gut microbiota, innate immunity and TLR9 in iGvHD and highlight anti-TLR9 strategies as novel therapeutic options.

                Author and article information

                Eur J Microbiol Immunol (Bp)
                Eur J Microbiol Immunol (Bp)
                European Journal of Microbiology & Immunology
                Akadémiai Kiadó (Budapest )
                01 May 2020
                18 July 2020
                : 10
                : 2
                : 80-90
                Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité – University Medicine Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
                Author notes
                *Corresponding author. CC5, Department of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Charité–University Medicine Berlin, FEM, Garystr. 5, D-14195, Berlin, Germany. Tel.: +49-30-450524318. E-mail: markus.heimesaat@ 123456charite.de

                contributed equally

                © 2020, The Authors

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes – if any – are indicated.

                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 46, Pages: 11
                Original Research Paper

                colonization resistance,murine gut microbiota,campylobacter coli,campylobacter jejuni,pro-inflammatory immune responses,host-pathogen-interaction


                Comment on this article

                Similar content285

                Cited by4

                Most referenced authors292