5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interactions Between Gut Microbiota and Acute Childhood Leukemia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Childhood leukemia, the commonest childhood cancer, mainly consists of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). Though great progresses have been made in the survival rates of childhood leukemia, the long-term health problems of long-term childhood leukemia survivors remain remarkable. In addition, the deep links between risk factors and childhood leukemia need to be elucidated. What can be done to improve the prevention and the prognosis of childhood leukemia is an essential issue. Gut microbiota, referred to as one of the largest symbiotic microorganisms that is accommodated in the gastrointestinal tract of human or animals, is found to be involved in the progression of various diseases. It is reported that microbiota may keep people in good health by participating in metabolism processes and regulating the immune system. Studies have also explored the potential relationships between gut microbiota and childhood leukemia. This review is meant to illustrate the roles of gut microbiota in the onset of acute childhood leukemia, as well as in the progress and prognosis of leukemia and how the treatments for leukemia affect gut microbiota. Besides, this review is focused on the possibility of building or rebuilding a healthy gut microbiota by adjusting the diet construction so as to help clinicians deal with childhood leukemia.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease.

          Next-generation sequencing of the hypervariable V3 region of the 16s rRNA gene isolated from serial stool specimens collected from 31 patients receiving allogeneic stem cell transplantation (SCT) was performed to elucidate variations in the composition of the intestinal microbiome in the course of allogeneic SCT. Metagenomic analysis was complemented by strain-specific enterococcal PCR and indirect assessment of bacterial load by liquid chromatography-tandem mass spectrometry of urinary indoxyl sulfate. At the time of admission, patients showed a predominance of commensal bacteria. After transplantation, a relative shift toward enterococci was observed, which was more pronounced under antibiotic prophylaxis and treatment of neutropenic infections. The shift was particularly prominent in patients that developed subsequently or suffered from active gastrointestinal (GI) graft-versus-host disease (GVHD). The mean proportion of enterococci in post-transplant stool specimens was 21% in patients who did not develop GI GVHD as compared with 46% in those that subsequently developed GI GVHD and 74% at the time of active GVHD. Enterococcal PCR confirmed predominance of Enterococcus faecium or both E. faecium and Enterococcus faecalis in these specimens. As a consequence of the loss of bacterial diversity, mean urinary indoxyl sulfate levels dropped from 42.5 ± 11 μmol/L to 11.8 ± 2.8 μmol/L in all post-transplant samples and to 3.5 ± 3 μmol/L in samples from patients with active GVHD. Our study reveals major microbiome shifts in the course of allogeneic SCT that occur in the period of antibiotic treatment but are more prominent in association with GI GVHD. Our data indicate early microbiome shifts and a loss of diversity of the intestinal microbiome that may affect intestinal inflammation in the setting of allogeneic SCT. Copyright © 2014 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Two genetic hits (more or less) to cancer.

            A Knudson (2001)
            Most cancers have many chromosomal abnormalities, both in number and in structure, whereas some show only a single aberration. In the era before molecular biology, cancer researchers, studying both human and animal cancers, proposed that a small number of events was needed for carcinogenesis. Evidence from the recent molecular era also indicates that cancers can arise from small numbers of events that affect common cell birth and death processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibiotics, pediatric dysbiosis, and disease.

              Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome's responses to antibiotics and its potential link to disease development are especially complex to study in the changing infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, interpretation, and eventual treatment of pediatric dysbiosis. This approach will also help provide evidence-based recommendations for antibiotic usage in infancy.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                19 June 2019
                2019
                : 10
                : 1300
                Affiliations
                Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
                Author notes

                Edited by: Liwei Xie, Guangdong Institute of Microbiology, China

                Reviewed by: Zongxin Ling, Zhejiang University, China; Chuan Wang, Auburn University, United States

                *Correspondence: Runming Jin, jinrunm@ 123456qq.com

                This article was submitted to Food Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.01300
                6593047
                31275258
                25b9ecaf-2435-48f1-9593-2a6e0d76ecc5
                Copyright © 2019 Wen, Jin and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 March 2019
                : 24 May 2019
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 81, Pages: 7, Words: 6323
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31701207
                Categories
                Microbiology
                Mini Review

                Microbiology & Virology
                gut microbiota,acute childhood leukemia,immune system,long-term health problem,diet construction

                Comments

                Comment on this article