89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estimated Comparative Integration Hotspots Identify Different Behaviors of Retroviral Gene Transfer Vectors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Integration of retroviral vectors in the human genome follows non random patterns that favor insertional deregulation of gene expression and may cause risks of insertional mutagenesis when used in clinical gene therapy. Understanding how viral vectors integrate into the human genome is a key issue in predicting these risks. We provide a new statistical method to compare retroviral integration patterns. We identified the positions where vectors derived from the Human Immunodeficiency Virus (HIV) and the Moloney Murine Leukemia Virus (MLV) show different integration behaviors in human hematopoietic progenitor cells. Non-parametric density estimation was used to identify candidate comparative hotspots, which were then tested and ranked. We found 100 significative comparative hotspots, distributed throughout the chromosomes. HIV hotspots were wider and contained more genes than MLV ones. A Gene Ontology analysis of HIV targets showed enrichment of genes involved in antigen processing and presentation, reflecting the high HIV integration frequency observed at the MHC locus on chromosome 6. Four histone modifications/variants had a different mean density in comparative hotspots (H2AZ, H3K4me1, H3K4me3, H3K9me1), while gene expression within the comparative hotspots did not differ from background. These findings suggest the existence of epigenetic or nuclear three-dimensional topology contexts guiding retroviral integration to specific chromosome areas.

          Author Summary

          Understanding how retroviral vectors integrate in the human genome is a major safety issue in gene therapy, since a concrete risk of developing tumors associated with the integration process has been observed in several clinical trials. Statistical analyses confirmed the non randomness of the integration. Where and why do virus-specific integrations tend to accumulate in the genome? We compared integration preferences of two retroviral vectors derived from HIV and MLV, which are used in most gene therapy trials for hematological disorders, in their actual clinical targets, i.e., human hematopoietic stem/progenitor cells. We developed a new statistical method to find areas of the genome, called comparative hotspots, where integration preferences are significantly different. We modeled the integration process as a stochastic process, so that integration sites are seen as samples from an unknown virus-specific probability density function. Thus, the problem became to identify areas where two empirical density functions differ significantly. The comparison of nonparametric variability bands around the estimated integration densities allowed identifying and ranking candidate comparative hotspots. Results indicated clear differential patterns of integration between HIV and MLV, leading to new hypotheses on the mechanisms governing retroviral integration.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Gene map of the extended human MHC.

          The major histocompatibility complex (MHC) is the most important region in the vertebrate genome with respect to infection and autoimmunity, and is crucial in adaptive and innate immunity. Decades of biomedical research have revealed many MHC genes that are duplicated, polymorphic and associated with more diseases than any other region of the human genome. The recent completion of several large-scale studies offers the opportunity to assimilate the latest data into an integrated gene map of the extended human MHC. Here, we present this map and review its content in relation to paralogy, polymorphism, immune function and disease.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Conspectus florae Graecae / auctore E. de Halácsy.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1.

              Gene transfer into hematopoietic stem cells has been used successfully for correcting lymphoid but not myeloid immunodeficiencies. Here we report on two adults who received gene therapy after nonmyeloablative bone marrow conditioning for the treatment of X-linked chronic granulomatous disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes resulting from mutations in gp91(phox). We detected substantial gene transfer in both individuals' neutrophils that lead to a large number of functionally corrected phagocytes and notable clinical improvement. Large-scale retroviral integration site-distribution analysis showed activating insertions in MDS1-EVI1, PRDM16 or SETBP1 that had influenced regulation of long-term hematopoiesis by expanding gene-corrected myelopoiesis three- to four-fold in both individuals. Although insertional influences have probably reinforced the therapeutic efficacy in this trial, our results suggest that gene therapy in combination with bone marrow conditioning can be successfully used to treat inherited diseases affecting the myeloid compartment such as CGD.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2011
                December 2011
                1 December 2011
                : 7
                : 12
                : e1002292
                Affiliations
                [1 ]University Center of Statistics for the Biomedical Sciences, Vita-Salute San Raffaele University, Milan, Italy
                [2 ]Department of Mathematics, University of Oslo, Oslo, Norway
                [3 ]Division of Genetics and Cell Biology, Istituto Scientifico H. San Raffaele, Milan, Italy
                [4 ]Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California, United States of America
                [5 ]Center for Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
                [6 ]Department of Biostatistics, University of Oslo, Oslo, Norway
                Imperial College London, United Kingdom
                Author notes

                Conceived and designed the experiments: AA IKG FM CDS AF. Performed the experiments: CC FM. Analyzed the data: AA DP IKG. Contributed reagents/materials/analysis tools: FM. Wrote the paper: AA IKG CC FM CDS AF. Contributed statistical methodology: AA IKG CDS AF. Implemented the bioinformatics pipeline for blind regions: AA DP.

                Article
                PCOMPBIOL-D-11-00869
                10.1371/journal.pcbi.1002292
                3228801
                22144885
                25bbbdfd-4698-45d8-aef5-7e464fcc2cd8
                Ambrosi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 June 2011
                : 17 October 2011
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Computational Biology
                Genomics
                Genome Analysis Tools
                Genomics
                Genomic Medicine
                Gene Therapy
                Mathematics
                Statistics
                Biostatistics
                Confidence Intervals
                Statistical Methods

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article