12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Acidic mammalian chitinase is a proteases-resistant glycosidase in mouse digestive system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chitinases are enzymes that hydrolyze chitin, a polymer of β-1, 4-linked N-acetyl-D-glucosamine (GlcNAc). Chitin has long been considered as a source of dietary fiber that is not digested in the mammalian digestive system. Here, we provide evidence that acidic mammalian chitinase (AMCase) can function as a major digestive enzyme that constitutively degrades chitin substrates and produces (GlcNAc) 2 fragments in the mouse gastrointestinal environment. AMCase was resistant to endogenous pepsin C digestion and remained active in the mouse stomach extract at pH 2.0. The AMCase mRNA levels were much higher than those of four major gastric proteins and two housekeeping genes and comparable to the level of pepsinogen C in the mouse stomach tissues. Furthermore, AMCase was expressed in the gastric pepsinogen-synthesizing chief cells. The enzyme was also stable and active in the presence of trypsin and chymotrypsin at pH 7.6, where pepsin C was completely degraded. Mouse AMCase degraded polymeric colloidal and crystalline chitin substrates in the gastrointestinal environments in presence of the proteolytic enzymes. Thus, AMCase can function as a protease-resistant major glycosidase under the conditions of stomach and intestine and degrade chitin substrates to produce (GlcNAc) 2, a source of carbon, nitrogen and energy.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation.

          Chitin is a surface component of parasites and insects, and chitinases are induced in lower life forms during infections with these agents. Although chitin itself does not exist in humans, chitinases are present in the human genome. We show here that acidic mammalian chitinase (AMCase) is induced via a T helper-2 (Th2)-specific, interleukin-13 (IL-13)-mediated pathway in epithelial cells and macrophages in an aeroallergen asthma model and expressed in exaggerated quantities in human asthma. AMCase neutralization ameliorated Th2 inflammation and airway hyperresponsiveness, in part by inhibiting IL-13 pathway activation and chemokine induction. AMCase may thus be an important mediator of IL-13-induced responses in Th2-dominated disorders such as asthma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease.

            Gaucher disease (GD; glucosylceramidosis) is caused by a deficient activity of the enzyme glucocerebrosidase (GC). Clinical manifestations are highly variable and cannot be predicted accurately on the basis of the properties of mutant GC. Analysis of secondary abnormalities, such as elevated plasma levels of some hydrolases, may help to increase insight into the complicated pathophysiology of the disease and could also provide useful disease markers. The recent availability of enzyme supplementation therapy for GD increases the need for markers as early predictors of the efficacy of treatment. We report the finding of a very marked increase in chitotrisidase activity in plasma of 30 of 32 symptomatic type 1 GD patients studied: the median activity being > 600 times the median value in plasma of healthy volunteers. In three GC-deficient individuals without clinical symptoms, only slight increases were noted. Chitotriosidase activity was absent in plasma of three control subjects and two patients. During enzyme supplementation therapy, chitotriosidase activity declined dramatically. We conclude that plasma chitotriosidase levels can serve as a new diagnostic hallmark of GD and should prove to be useful in assessing whether clinical manifestations of GD are present and for monitoring the efficacy of therapeutic intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of a novel acidic mammalian chitinase distinct from chitotriosidase.

              Chitinases are ubiquitous chitin-fragmenting hydrolases. Recently we discovered the first human chitinase, named chitotriosidase, that is specifically expressed by phagocytes. We here report the identification, purification, and subsequent cloning of a second mammalian chitinase. This enzyme is characterized by an acidic isoelectric point and therefore named acidic mammalian chitinase (AMCase). In rodents and man the enzyme is relatively abundant in the gastrointestinal tract and is found to a lesser extent in the lung. Like chitotriosidase, AMCase is synthesized as a 50-kDa protein containing a 39-kDa N-terminal catalytic domain, a hinge region, and a C-terminal chitin-binding domain. In contrast to chitotriosidase, the enzyme is extremely acid stable and shows a distinct second pH optimum around pH 2. AMCase is capable of cleaving artificial chitin-like substrates as well as crab shell chitin and chitin as present in the fungal cell wall. Our study has revealed the existence of a chitinolytic enzyme in the gastrointestinal tract and lung that may play a role in digestion and/or defense.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                24 November 2016
                2016
                : 6
                : 37756
                Affiliations
                [1 ]Department of Chemistry and Life Science, Kogakuin University , Hachioji, Tokyo 192-0015, Japan
                [2 ]Laboratory for Structural Neuropathology, RIKEN Brain Science Institute , Wako, Saitama 351-0198, Japan
                [3 ]Department of Neuroscience for Neurodegenerative Disorders, Juntendo University Graduate School of Medicine , Tokyo 113-8421, Japan
                [4 ]Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science , Kyotanabe-shi, Kyoto 610-0394 Japan
                [5 ]Department of Neuroscience, Mayo Clinic , Jacksonville, FL 32224, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep37756
                10.1038/srep37756
                5121897
                27883045
                25d0d856-1b4e-45c3-b889-56881c2bf90b
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 July 2016
                : 31 October 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article