10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Molecular mechanisms for CMT1A duplication and HNPP deletion.

      Annals of the New York Academy of Sciences
      Charcot-Marie-Tooth Disease, genetics, Crossing Over, Genetic, Female, Gene Deletion, Gene Duplication, Hereditary Sensory and Motor Neuropathy, Humans, Male, Recombination, Genetic

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As the best characterized human genomic disorders, CMT1A and HNPP illustrate several common mechanistic features of genomic rearrangements. These features include the following: (1) Recombination occurs between homologous sequences flanking the duplicated/deleted genomic segment. (2) The evolution of the mammalian genome may result in an architecture consisting of region-specific low-copy repeats that predispose to rearrangement secondary to providing homologous regions as substrate for recombination. (3) Strand exchange occurs preferentially in a region of perfect sequence identity within the flanking repeat sequences. (4) Double-strand breaks likely initiate recombination between the flanking repeats. (5) The mechanism and rate of homologous recombination resulting in DNA rearrangement may differ for male and female gametogenesis. (6) Homologous recombination resulting in DNA rearrangement occurs with high frequency in the human genome. (7) Genomic disorders result from structural features of the human genome and not population specific alleles or founder effects; therefore, genomic disorders appear to occur with equal frequencies in different world populations.

          Related collections

          Author and article information

          Comments

          Comment on this article