11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Recent trends on hydrogel based drug delivery systems for infectious diseases

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydrogel based drug delivery systems owe excellent potential as targeted drug delivery systems for the delivery of therapeutic agents and diagnostics for major infectious diseases.

          Abstract

          Since centuries, the rapid spread and cure of infectious diseases have been a major concern to the progress and survival of humans. These diseases are a global burden and the prominent cause for worldwide deaths and disabilities. Nanomedicine has emerged as the most excellent tool to eradicate and halt their spread. Various nanoformulations (NFs) using advanced nanotechnology are in demand. Recently, hydrogel and nanogel based drug delivery devices have posed new prospects to simulate the natural intelligence of various biological systems. Owing to their unique porous interpenetrating network design, hydrophobic drug incorporation and stimulus sensitivity hydrogels owe excellent potential as targeted drug delivery systems. The present review is an attempt to highlight the recent trends of hydrogel based drug delivery systems for the delivery of therapeutic agents and diagnostics for major infectious diseases including acquired immune deficiency syndrome (AIDS), malaria, tuberculosis, influenza and ebola. Future prospects and challenges are also described.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogel nanoparticles in drug delivery.

          Hydrogel nanoparticles have gained considerable attention in recent years as one of the most promising nanoparticulate drug delivery systems owing to their unique potentials via combining the characteristics of a hydrogel system (e.g., hydrophilicity and extremely high water content) with a nanoparticle (e.g., very small size). Several polymeric hydrogel nanoparticulate systems have been prepared and characterized in recent years, based on both natural and synthetic polymers, each with its own advantages and drawbacks. Among the natural polymers, chitosan and alginate have been studied extensively for preparation of hydrogel nanoparticles and from synthetic group, hydrogel nanoparticles based on poly (vinyl alcohol), poly (ethylene oxide), poly (ethyleneimine), poly (vinyl pyrrolidone), and poly-N-isopropylacrylamide have been reported with different characteristics and features with respect to drug delivery. Regardless of the type of polymer used, the release mechanism of the loaded agent from hydrogel nanoparticles is complex, while resulting from three main vectors, i.e., drug diffusion, hydrogel matrix swelling, and chemical reactivity of the drug/matrix. Several crosslinking methods have been used in the way to form the hydrogel matix structures, which can be classified in two major groups of chemically- and physically-induced crosslinking.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            New Developments in Liposomal Drug Delivery.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paul Ehrlich's magic bullet concept: 100 years of progress.

              Exceptional advances in molecular biology and genetic research have expedited cancer drug development tremendously. The declared paradigm is the development of 'personalized and tailored drugs' that precisely target the specific molecular defects of a cancer patient. It is therefore appropriate to revisit the intellectual foundations of the development of such agents, as many have shown great clinical success. One hundred years ago, Paul Ehrlich, the founder of chemotherapy, received the Nobel Prize for Physiology or Medicine. His postulate of creating 'magic bullets' for use in the fight against human diseases inspired generations of scientists to devise powerful molecular cancer therapeutics.
                Bookmark

                Author and article information

                Journal
                BSICCH
                Biomaterials Science
                Biomater. Sci.
                Royal Society of Chemistry (RSC)
                2047-4830
                2047-4849
                2016
                2016
                : 4
                : 11
                : 1535-1553
                Affiliations
                [1 ]Center of Personalized Nanomedicine
                [2 ]Institute of Neuroimmune Pharmacology
                [3 ]Department of Immunology
                [4 ]Herbert Wertheim College of Medicine
                [5 ]Florida International University
                [6 ]Department of Biotechnology
                [7 ]All India Institute of Medical Sciences
                [8 ]New Delhi
                [9 ]India
                [10 ]Materials Research Laboratory
                [11 ]Department of Chemistry
                [12 ]Department of Pharmacology
                Article
                10.1039/C6BM00276E
                5162423
                27709137
                25e41068-8081-4589-9209-00808978ca07
                © 2016
                History

                Comments

                Comment on this article