9
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Palmitate and oleate exert differential effects on insulin signalling and glucose uptake in human skeletal muscle cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Saturated fatty acids are implicated in the development of insulin resistance, whereas unsaturated fatty acids may have a protective effect on metabolism. We tested in primary human myotubes if insulin resistance induced by saturated fatty acid palmitate can be ameliorated by concomitant exposure to unsaturated fatty acid oleate. Primary human myotubes were pretreated with palmitate, oleate or their combination for 12 h. Glucose uptake was determined by intracellular accumulation of [ 3H]-2-deoxy- d-glucose, insulin signalling and activation of endoplasmic reticulum (ER) stress by Western blotting, and mitochondrial reactive oxygen species (ROS) production by fluorescent dye MitoSOX. Exposure of primary human myotubes to palmitate impaired insulin-stimulated Akt-Ser 473, AS160 and GSK-3β phosphorylation, induced ER stress signalling target PERK and stress kinase JNK 54 kDa isoform. These effects were virtually abolished by concomitant exposure of palmitate-treated myotubes to oleate. However, an exposure to palmitate, oleate or their combination reduced insulin-stimulated glucose uptake. This was associated with increased mitochondrial ROS production in palmitate-treated myotubes co-incubated with oleate, and was alleviated by antioxidants MitoTempo and Tempol. Thus, metabolic and intracellular signalling events diverge in myotubes treated with palmitate and oleate. Exposure of human myotubes to excess fatty acids increases ROS production and induces insulin resistance.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: not found
          • Article: not found

          The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization.

            • Record: found
            • Abstract: found
            • Article: not found

            Diet and risk of Type II diabetes: the role of types of fat and carbohydrate.

            Although diet and nutrition are widely believed to play an important part in the development of Type II (non-insulin-dependent) diabetes mellitus, specific dietary factors have not been clearly defined. Much controversy exists about the relations between the amount and types of dietary fat and carbohydrate and the risk of diabetes. In this article, we review in detail the current evidence regarding the associations between different types of fats and carbohydrates and insulin resistance and Type II diabetes. Our findings indicate that a higher intake of polyunsaturated fat and possibly long-chain n-3 fatty acids could be beneficial, whereas a higher intake of saturated fat and trans-fat could adversely affect glucose metabolism and insulin resistance. In dietary practice, exchanging nonhydrogenated polyunsaturated fat for saturated and trans-fatty acids could appreciably reduce risk of Type II diabetes. In addition, a low-glycaemic index diet with a higher amount of fiber and minimally processed whole grain products reduces glycaemic and insulinaemic responses and lowers the risk of Type II diabetes. Dietary recommendations to prevent Type II diabetes should focus more on the quality of fat and carbohydrate in the diet than quantity alone, in addition to balancing total energy intake with expenditure to avoid overweight and obesity.
              • Record: found
              • Abstract: found
              • Article: not found

              Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation.

              Oxidative stress in skeletal muscle is a hallmark of various pathophysiologic states that also feature increased reliance on long-chain fatty acid (LCFA) substrate, such as insulin resistance and exercise. However, little is known about the mechanistic basis of the LCFA-induced reactive oxygen species (ROS) burden in intact mitochondria, and elucidation of this mechanistic basis was the goal of this study. Specific aims were to determine the extent to which LCFA catabolism is associated with ROS production and to gain mechanistic insights into the associated ROS production. Because intermediates and by-products of LCFA catabolism may interfere with antioxidant mechanisms, we predicted that ROS formation during LCFA catabolism reflects a complex process involving multiple sites of ROS production as well as modified mitochondrial function. Thus, we utilized several complementary approaches to probe the underlying mechanism(s). Using skeletal muscle mitochondria, our findings indicate that even a low supply of LCFA is associated with ROS formation in excess of that generated by NADH-linked substrates. Moreover, ROS production was evident across the physiologic range of membrane potential and was relatively insensitive to membrane potential changes. Determinations of topology and membrane potential as well as use of inhibitors revealed complex III and the electron transfer flavoprotein (ETF) and ETF-oxidoreductase, as likely sites of ROS production. Finally, ROS production was sensitive to matrix levels of LCFA catabolic intermediates, indicating that mitochondrial export of LCFA catabolic intermediates can play a role in determining ROS levels.

                Author and article information

                Journal
                Endocr Connect
                Endocr Connect
                EC
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                2049-3614
                July 2017
                05 June 2017
                : 6
                : 5
                : 331-339
                Affiliations
                [1 ]Minerva Foundation Institute for Medical Research Helsinki, Finland
                [2 ]University of Helsinki Department of Medicine, and Abdominal Center, Endocrinology, Helsinki University Central Hospital, Helsinki, Finland
                Author notes
                Correspondence should be addressed to H A Koistinen; Email: heikki.koistinen@ 123456helsinki.fi
                [*]

                (S Mäkinen and Y H Nguyen contributed equally to this work)

                Article
                EC170039
                10.1530/EC-17-0039
                5510447
                28584168
                25e7c542-cb77-4ab7-9f2a-0aa86c489d33
                © 2017 The authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License..

                History
                : 27 April 2017
                : 2 June 2017
                Categories
                Research

                er stress,fatty acid,glucose uptake,human,insulin signalling,skeletal muscle

                Comments

                Comment on this article

                Related Documents Log