167
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 2002–3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history 1 . An ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) 2 suggests that this group of viruses remains a major threat and that their distribution is wider than previously recognized. Although bats have been suggested as the natural reservoirs of both viruses 35 , attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. Diverse SARS-like coronaviruses (SL-CoVs) have now been reported from bats in China, Europe and Africa 58 , but none are considered a direct progenitor of SARS-CoV because of their phylogenetic disparity from this virus and the inability of their spike proteins (S) to use the SARS-CoV cellular receptor molecule, the human angiotensin converting enzyme II (ACE2) 9, 10 . Here, we report whole genome sequences of two novel bat CoVs from Chinese horseshoe bats (Family: Rhinolophidae) in Yunnan, China; RsSHC014 and Rs3367. These viruses are far more closely related to SARS-CoV than any previously identified bat CoVs, particularly in the receptor binding domain (RDB) of the S protein. Most importantly, we report the first recorded isolation of a live SL-CoV (bat SL-CoV-WIV1) from bat fecal samples in Vero E6 cells, which has typical coronavirus morphology, 99.9% sequence identity to Rs3367 and uses the ACE2s from human, civet and Chinese horseshoe bat for cell entry. Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.

          A previously unknown coronavirus was isolated from the sputum of a 60-year-old man who presented with acute pneumonia and subsequent renal failure with a fatal outcome in Saudi Arabia. The virus (called HCoV-EMC) replicated readily in cell culture, producing cytopathic effects of rounding, detachment, and syncytium formation. The virus represents a novel betacoronavirus species. The closest known relatives are bat coronaviruses HKU4 and HKU5. Here, the clinical data, virus isolation, and molecular identification are presented. The clinical picture was remarkably similar to that of the severe acute respiratory syndrome (SARS) outbreak in 2003 and reminds us that animal coronaviruses can cause severe disease in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel coronavirus associated with severe acute respiratory syndrome.

            A worldwide outbreak of severe acute respiratory syndrome (SARS) has been associated with exposures originating from a single ill health care worker from Guangdong Province, China. We conducted studies to identify the etiologic agent of this outbreak. We received clinical specimens from patients in seven countries and tested them, using virus-isolation techniques, electron-microscopical and histologic studies, and molecular and serologic assays, in an attempt to identify a wide range of potential pathogens. None of the previously described respiratory pathogens were consistently identified. However, a novel coronavirus was isolated from patients who met the case definition of SARS. Cytopathological features were noted in Vero E6 cells inoculated with a throat-swab specimen. Electron-microscopical examination revealed ultrastructural features characteristic of coronaviruses. Immunohistochemical and immunofluorescence staining revealed reactivity with group I coronavirus polyclonal antibodies. Consensus coronavirus primers designed to amplify a fragment of the polymerase gene by reverse transcription-polymerase chain reaction (RT-PCR) were used to obtain a sequence that clearly identified the isolate as a unique coronavirus only distantly related to previously sequenced coronaviruses. With specific diagnostic RT-PCR primers we identified several identical nucleotide sequences in 12 patients from several locations, a finding consistent with a point-source outbreak. Indirect fluorescence antibody tests and enzyme-linked immunosorbent assays made with the new isolate have been used to demonstrate a virus-specific serologic response. This virus may never before have circulated in the U.S. population. A novel coronavirus is associated with this outbreak, and the evidence indicates that this virus has an etiologic role in SARS. Because of the death of Dr. Carlo Urbani, we propose that our first isolate be named the Urbani strain of SARS-associated coronavirus. Copyright 2003 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

              Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                Nature
                0028-0836
                1476-4687
                3 May 2016
                30 October 2013
                28 November 2013
                12 April 2017
                : 503
                : 7477
                : 535-538
                Affiliations
                [1 ]Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology of the Chinese Academy of Sciences, Wuhan 430071, China
                [2 ]EcoHealth Alliance, New York, NY 10001, USA
                [3 ]One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
                [4 ]CSIRO Australian Animal Health Laboratory, Geelong 3220, Australia
                [5 ]College of Life Sciences, East Normal University, Shanghai 200062, China
                [6 ]Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857
                Author notes
                [# ]Corresponding authors: Peter Daszak, daszak@ 123456ecohealthalliance.org ; Zheng-Li Shi, zlshi@ 123456wh.iov.cn
                [*]

                These authors contributed equally.

                Article
                NIHMS525951
                10.1038/nature12711
                5389864
                24172901
                25f7bab7-21ca-4a1e-a939-f1ad37ba26a8

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article