3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mitochondrial Dysfunction and NAD+ Metabolism Alterations in the Pathophysiology of Acute Brain Injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references201

          • Record: found
          • Abstract: found
          • Article: not found

          Sirtuins in mammals: insights into their biological function.

          Sirtuins are a conserved family of proteins found in all domains of life. The first known sirtuin, Sir2 (silent information regulator 2) of Saccharomyces cerevisiae, from which the family derives its name, regulates ribosomal DNA recombination, gene silencing, DNA repair, chromosomal stability and longevity. Sir2 homologues also modulate lifespan in worms and flies, and may underlie the beneficial effects of caloric restriction, the only regimen that slows aging and extends lifespan of most classes of organism, including mammals. Sirtuins have gained considerable attention for their impact on mammalian physiology, since they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. In this review we describe our current understanding of the biological function of the seven mammalian sirtuins, SIRT1-7, and we will also discuss their potential as mediators of caloric restriction and as pharmacological targets to delay and treat human age-related diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.

            Acetylation of proteins on lysine residues is a dynamic posttranslational modification that is known to play a key role in regulating transcription and other DNA-dependent nuclear processes. However, the extent of this modification in diverse cellular proteins remains largely unknown, presenting a major bottleneck for lysine-acetylation biology. Here we report the first proteomic survey of this modification, identifying 388 acetylation sites in 195 proteins among proteins derived from HeLa cells and mouse liver mitochondria. In addition to regulators of chromatin-based cellular processes, nonnuclear localized proteins with diverse functions were identified. Most strikingly, acetyllysine was found in more than 20% of mitochondrial proteins, including many longevity regulators and metabolism enzymes. Our study reveals previously unappreciated roles for lysine acetylation in the regulation of diverse cellular pathways outside of the nucleus. The combined data sets offer a rich source for further characterization of the contribution of this modification to cellular physiology and human diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.

              Fat tissue produces a variety of secreted proteins (adipocytokines) with important roles in metabolism. We isolated a newly identified adipocytokine, visfatin, that is highly enriched in the visceral fat of both humans and mice and whose expression level in plasma increases during the development of obesity. Visfatin corresponds to a protein identified previously as pre-B cell colony-enhancing factor (PBEF), a 52-kilodalton cytokine expressed in lymphocytes. Visfatin exerted insulin-mimetic effects in cultured cells and lowered plasma glucose levels in mice. Mice heterozygous for a targeted mutation in the visfatin gene had modestly higher levels of plasma glucose relative to wild-type littermates. Surprisingly, visfatin binds to and activates the insulin receptor. Further study of visfatin's physiological role may lead to new insights into glucose homeostasis and/or new therapies for metabolic disorders such as diabetes.
                Bookmark

                Author and article information

                Journal
                Translational Stroke Research
                Transl. Stroke Res.
                Springer Science and Business Media LLC
                1868-4483
                1868-601X
                December 2013
                August 10 2013
                December 2013
                : 4
                : 6
                : 618-634
                Article
                10.1007/s12975-013-0278-x
                24323416
                25f85c72-ea17-4409-87ab-13dbcf718222
                © 2013

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article