20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Intracellular routes and selective retention of antigens in mildly acidic cathepsin D/lysosome-associated membrane protein-1/MHC class II-positive vesicles in immature dendritic cells.

      The Journal of Immunology Author Choice

      Animals, Antigen Presentation, Antigens, metabolism, Antigens, CD, immunology, Cathepsin D, Cell Compartmentation, Cell Line, Cytoskeleton, Dendritic Cells, cytology, Dextrans, Fluorescein-5-isothiocyanate, analogs & derivatives, Histocompatibility Antigens Class II, Hydrogen-Ion Concentration, Intracellular Fluid, Lysosome-Associated Membrane Glycoproteins, Lysosomes, enzymology, Membrane Glycoproteins, Mice, Ovalbumin, Stem Cells, Subcellular Fractions, Time Factors

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immature dendritic cells (DC) use both macropinocytosis and mannose receptor-mediated endocytosis to internalize soluble Ags efficiently. These Ags are ultimately presented to T cells after DC maturation and migration into the lymph nodes. We have previously described the immortalized myeloid cell line FSDC as displaying the characteristics of early DC precursors that efficiently internalize soluble Ags. To describe the different routes of Ag uptake and to identify the Ag retention compartments in FSDC, we followed the intracellular fate of FITC-coupled OVA, dextran (DX), transferrin, and Lucifer Yellow using flow cytometry, confocal microscopy, and immunoelectron microscopy. OVA and DX gained access into macropinosomes and early endosomes. DX was preferentially sorted into endosomal compartments, while most of the OVA entered macropinosomes via fluid phase uptake. We found a long-lasting retention of DX and OVA of up to 24 h. After 6 h of chase, these two molecules were concentrated in common vesicular compartments. These retention compartments were distinct from endosomes and lysosomes; they were much larger, only mildly acidic, and lacked the small GTP binding protein rab7. However, they were positive for lysosome-associated membrane protein-1, the protease cathepsin D, and MHC class II molecules, thus representing matured macropinosomes. These data suggest that the activity of vacuolar proteases is reduced at the mildly acidic pH of these vesicles, which explains their specific retention of an Ag. The retention compartments might be used by nonlymphoid tissue DC to store peripheral Ags during their migration to the lymph node.

          Related collections

          Author and article information

          Journal
          9378956

          Comments

          Comment on this article