135
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      BioMagResBank

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The BioMagResBank (BMRB: www.bmrb.wisc.edu) is a repository for experimental and derived data gathered from nuclear magnetic resonance (NMR) spectroscopic studies of biological molecules. BMRB is a partner in the Worldwide Protein Data Bank (wwPDB). The BMRB archive consists of four main data depositories: (i) quantitative NMR spectral parameters for proteins, peptides, nucleic acids, carbohydrates and ligands or cofactors (assigned chemical shifts, coupling constants and peak lists) and derived data (relaxation parameters, residual dipolar couplings, hydrogen exchange rates, pK a values, etc.), (ii) databases for NMR restraints processed from original author depositions available from the Protein Data Bank, (iii) time-domain (raw) spectral data from NMR experiments used to assign spectral resonances and determine the structures of biological macromolecules and (iv) a database of one- and two-dimensional 1H and 13C one- and two-dimensional NMR spectra for over 250 metabolites. The BMRB website provides free access to all of these data. BMRB has tools for querying the archive and retrieving information and an ftp site (ftp.bmrb.wisc.edu) where data in the archive can be downloaded in bulk. Two BMRB mirror sites exist: one at the PDBj, Protein Research Institute, Osaka University, Osaka, Japan (bmrb.protein.osaka-u.ac.jp) and the other at CERM, University of Florence, Florence, Italy (bmrb.postgenomicnmr.net/). The site at Osaka also accepts and processes data depositions.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA.

          Combined automated NOE assignment and structure determination module (CANDID) is a new software for efficient NMR structure determination of proteins by automated assignment of the NOESY spectra. CANDID uses an iterative approach with multiple cycles of NOE cross-peak assignment and protein structure calculation using the fast DYANA torsion angle dynamics algorithm, so that the result from each CANDID cycle consists of exhaustive, possibly ambiguous NOE cross-peak assignments in all available spectra and a three-dimensional protein structure represented by a bundle of conformers. The input for the first CANDID cycle consists of the amino acid sequence, the chemical shift list from the sequence-specific resonance assignment, and listings of the cross-peak positions and volumes in one or several two, three or four-dimensional NOESY spectra. The input for the second and subsequent CANDID cycles contains the three-dimensional protein structure from the previous cycle, in addition to the complete input used for the first cycle. CANDID includes two new elements that make it robust with respect to the presence of artifacts in the input data, i.e. network-anchoring and constraint-combination, which have a key role in de novo protein structure determinations for the successful generation of the correct polypeptide fold by the first CANDID cycle. Network-anchoring makes use of the fact that any network of correct NOE cross-peak assignments forms a self-consistent set; the initial, chemical shift-based assignments for each individual NOE cross-peak are therefore weighted by the extent to which they can be embedded into the network formed by all other NOE cross-peak assignments. Constraint-combination reduces the deleterious impact of artifact NOE upper distance constraints in the input for a protein structure calculation by combining the assignments for two or several peaks into a single upper limit distance constraint, which lowers the probability that the presence of an artifact peak will influence the outcome of the structure calculation. CANDID test calculations were performed with NMR data sets of four proteins for which high-quality structures had previously been solved by interactive protocols, and they yielded comparable results to these reference structure determinations with regard to both the residual constraint violations, and the precision and accuracy of the atomic coordinates. The CANDID approach has further been validated by de novo NMR structure determinations of four additional proteins. The experience gained in these calculations shows that once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach results in greatly enhanced efficiency of the NOESY spectral analysis. The fact that the correct fold is obtained in cycle 1 of a de novo structure calculation is the single most important advance achieved with CANDID, when compared with previously proposed automated NOESY assignment methods that do not use network-anchoring and constraint-combination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ARIA2: automated NOE assignment and data integration in NMR structure calculation.

            Modern structural genomics projects demand for integrated methods for the interpretation and storage of nuclear magnetic resonance (NMR) data. Here we present version 2.1 of our program ARIA (Ambiguous Restraints for Iterative Assignment) for automated assignment of nuclear Overhauser enhancement (NOE) data and NMR structure calculation. We report on recent developments, most notably a graphical user interface, and the incorporation of the object-oriented data model of the Collaborative Computing Project for NMR (CCPN). The CCPN data model defines a storage model for NMR data, which greatly facilitates the transfer of data between different NMR software packages. A distribution with the source code of ARIA 2.1 is freely available at http://www.pasteur.fr/recherche/unites/Binfs/aria2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium.

              In isotropic solution, internuclear dipolar couplings average to zero as a result of rotational diffusion. By dissolving macromolecules in a dilute aqueous nematic discotic liquid-crystalline medium containing widely spaced magnetically oriented particles, a tunable degree of solute alignment with the magnetic field can be created while retaining the high resolution and sensitivity of the regular isotropic nuclear magnetic resonance (NMR) spectrum. Dipolar couplings between 1H-1H, 1H-13C, 1H-15N, and 13C-13C pairs in such an oriented macromolecule no longer average to zero, and are readily measured. Distances and angles derived from dipolar couplings in human ubiquitin are in excellent agreement with its crystal structure. The approach promises to improve the accuracy of structures determined by NMR, and extend the size limit.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2008
                4 November 2007
                4 November 2007
                : 36
                : Database issue , Database issue
                : D402-D408
                Affiliations
                1Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA, 2Institute for Protein Research, Osaka University, Osaka, Japan, 3The Department of Informatics, University of Athens, Athens, Greece and 4Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
                Author notes
                *To whom correspondence should be addressed.+1 608 265 5741+1 608 262 3453 elu@ 123456bmrb.wisc.edu
                Article
                10.1093/nar/gkm957
                2238925
                17984079
                26060f77-0004-4a66-9925-19e433dd9a56
                © 2007 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 September 2007
                : 15 October 2007
                : 16 October 2007
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article