Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Coalescing binary systems of compact objects to (post)$^{5/2}-Newtonian order. V. Spin Effects

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      We examine the effects of spin-orbit and spin-spin coupling on the inspiral of a coalescing binary system of spinning compact objects and on the gravitational radiation emitted therefrom. Using a formalism developed by Blanchet, Damour, and Iyer, we calculate the contributions due to the spins of the bodies to the symmetric trace-free radiative multipole moments which are used to calculate the waveform, energy loss, and angular momentum loss from the inspiralling binary. Using equations of motion which include terms due to spin-orbit and spin-spin coupling, we evolve the orbit of a coalescing binary and use the orbit to calculate the emitted gravitational waveform. We find the spins of the bodies affect the waveform in several ways: 1) The spin terms contribute to the orbital decay of the binary, and thus to the accumulated phase of the gravitational waveform. 2) The spins cause the orbital plane to precess, which changes the orientation of the orbital plane with respect to an observer, thus causing the shape of the waveform to be modulated. 3) The spins contribute directly to the amplitude of the waveform. We discuss the size and importance of spin effects for the case of two coalescing neutron stars, and for the case of a neutron star orbiting a rapidly rotating \(10M_\odot\) black hole.

      Related collections

      Most cited references 29

      • Record: found
      • Abstract: found
      • Article: not found

      LIGO: The Laser Interferometer Gravitational-Wave Observatory.

      The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.
        Bookmark
        • Record: found
        • Abstract: not found
        • Article: not found

        Multipole expansions of gravitational radiation

         Kip Thorne (1980)
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries

            Bookmark

            Author and article information

            Journal
            08 June 1995
            gr-qc/9506022 10.1103/PhysRevD.52.821
            Custom metadata
            WUGRAV-94-6, NU-GR-11
            Phys.Rev. D52 (1995) 821-847
            60 pages, revtex 3.0, 16 figures available upon request, to appear in Physical Review D
            gr-qc

            Comments

            Comment on this article