Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

From Dyck paths to standard Young tableaux

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      The number of Dyck paths of semilength \(n\) is certainly not equal to the number of standard Young tableaux (SYT) with \(n\) boxes. We investigate several ways to add structure or restrict these sets so as to obtain equinumerous sets. Our most sophisticated bijective proof starts with Dyck paths whose \(k\)-ascents for \(k>1\) are labeled by connected matchings on \([k]\) and arrives at SYT with at most \(2k-1\) rows. Along the way, this bijection visits \(k\)-noncrossing and \(k\)-nonnesting partial matchings, oscillating tableaux and involutions with decreasing subsequences of length at most \(2k-1\). In addition, we present bijections from eight other types of Dyck and Motzkin paths to certain classes of SYT.

      Related collections

      Author and article information

      Journal
      01 August 2017
      1708.00513

      http://arxiv.org/licenses/nonexclusive-distrib/1.0/

      Custom metadata
      05A19
      19 pages, 9 figures
      math.CO

      Comments

      Comment on this article