Blog
About

  • Record: found
  • Abstract: not found
  • Article: not found

RNA-Seq: a revolutionary tool for transcriptomics

  , ,

Nature Reviews Genetics

Springer Science and Business Media LLC

Read this article at

ScienceOpenPublisher
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Related collections

      Most cited references 42

      • Record: found
      • Abstract: found
      • Article: not found

      Mapping and quantifying mammalian transcriptomes by RNA-Seq.

      We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3' untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 x 10(5) distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays.

        Ultra-high-throughput sequencing is emerging as an attractive alternative to microarrays for genotyping, analysis of methylation patterns, and identification of transcription factor binding sites. Here, we describe an application of the Illumina sequencing (formerly Solexa sequencing) platform to study mRNA expression levels. Our goals were to estimate technical variance associated with Illumina sequencing in this context and to compare its ability to identify differentially expressed genes with existing array technologies. To do so, we estimated gene expression differences between liver and kidney RNA samples using multiple sequencing replicates, and compared the sequencing data to results obtained from Affymetrix arrays using the same RNA samples. We find that the Illumina sequencing data are highly replicable, with relatively little technical variation, and thus, for many purposes, it may suffice to sequence each mRNA sample only once (i.e., using one lane). The information in a single lane of Illumina sequencing data appears comparable to that in a single array in enabling identification of differentially expressed genes, while allowing for additional analyses such as detection of low-expressed genes, alternative splice variants, and novel transcripts. Based on our observations, we propose an empirical protocol and a statistical framework for the analysis of gene expression using ultra-high-throughput sequencing technology.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Mapping short DNA sequencing reads and calling variants using mapping quality scores.

          New sequencing technologies promise a new era in the use of DNA sequence. However, some of these technologies produce very short reads, typically of a few tens of base pairs, and to use these reads effectively requires new algorithms and software. In particular, there is a major issue in efficiently aligning short reads to a reference genome and handling ambiguity or lack of accuracy in this alignment. Here we introduce the concept of mapping quality, a measure of the confidence that a read actually comes from the position it is aligned to by the mapping algorithm. We describe the software MAQ that can build assemblies by mapping shotgun short reads to a reference genome, using quality scores to derive genotype calls of the consensus sequence of a diploid genome, e.g., from a human sample. MAQ makes full use of mate-pair information and estimates the error probability of each read alignment. Error probabilities are also derived for the final genotype calls, using a Bayesian statistical model that incorporates the mapping qualities, error probabilities from the raw sequence quality scores, sampling of the two haplotypes, and an empirical model for correlated errors at a site. Both read mapping and genotype calling are evaluated on simulated data and real data. MAQ is accurate, efficient, versatile, and user-friendly. It is freely available at http://maq.sourceforge.net.
            Bookmark

            Author and article information

            Journal
            Nature Reviews Genetics
            Nat Rev Genet
            Springer Science and Business Media LLC
            1471-0056
            1471-0064
            January 2009
            January 2009
            : 10
            : 1
            : 57-63
            10.1038/nrg2484
            © 2009

            http://www.springer.com/tdm

            Comments

            Comment on this article