17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of wearables in spinal posture analysis: a systematic review

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Wearables consist of numerous technologies that are worn on the body and measure parameters such as step count, distance travelled, heart rate and sleep quantity. Recently, various wearable systems have been designed capable of detecting spinal posture and providing live biofeedback when poor posture is sustained. It is hypothesised that long-term use of these wearables may improve spinal posture.

          Research questions

          To (1) examine the capabilities of current devices assessing spine posture, (2) to identify studies implementing such devices in the clinical setting and (3) comment on the clinical practicality of integration of such devices into routine care where appropriate.

          Methods

          A comprehensive systematic review was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA) across the following databases: PubMed; MEDLINE; EMBASE; Cochrane; and Scopus. Articles related to wearables systems able to measure spinal posture were selected amongst all published studies dated from 1980 onwards. Extracted data was collected as per a predetermined checklist including device types, study objectives, findings and limitations.

          Results

          A total of 37 articles were extensively reviewed and analysed in the final review. The proposed wearables most commonly used Inertial Measurement Units (IMUs) as the underlying technology. Wearables measuring spinal posture have been proposed to be used in the following settings: post-operative rehabilitation; treatment of musculoskeletal disorders; diagnosis of pathological spinal posture; monitoring of progression of Parkinson’s Disease; detection of falls; workplace occupational health and safety; comparison of interventions.

          Conclusions

          This is the first and only study to specifically review wearable devices that monitor spinal posture. Our findings suggest that currently available devices are capable of assessing spinal posture with good accuracy in the clinical setting. However, further validation regarding the long-term use of these technologies and improvements regarding practicality is required for commercialisation.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Rise of Consumer Health Wearables: Promises and Barriers

          Lukasz Piwek and colleagues consider whether wearable technology can become a valuable asset for health care.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The effectiveness of robotic-assisted gait training for paediatric gait disorders: systematic review

            Background Robotic-assisted gait training (RAGT) affords an opportunity to increase walking practice with mechanical assistance from robotic devices, rather than therapists, where the child may not be able to generate a sufficient or correct motion with enough repetitions to promote improvement. However the devices are expensive and clinicians and families need to understand if the approach is worthwhile for their children, and how it may be best delivered. Methods The objective of this review was to identify and appraise the existing evidence for the effectiveness of RAGT for paediatric gait disorders, including modes of delivery and potential benefit. Six databases were searched from 1980 to October 2016, using relevant search terms. Any clinical trial that evaluated a clinical aspect of RAGT for children/adolescents with altered gait was selected for inclusion. Data were extracted following the PRISMA approach. Seventeen trials were identified, assessed for level of evidence and risk of bias, and appropriate data extracted for reporting. Results Three randomized controlled trials were identified, with the remainder of lower level design. Most individual trials reported some positive benefits for RAGT with children with cerebral palsy (CP), on activity parameters such as standing ability, walking speed and distance. However a meta-analysis of the two eligible RCTs did not confirm this finding (p = 0.72). Training schedules were highly variable in duration and frequency and adverse events were either not reported or were minimal. There was a paucity of evidence for diagnoses other than CP. Conclusion There is weak and inconsistent evidence regarding the use of RAGT for children with gait disorders. If clinicians (and their clients) choose to use RAGT, they should monitor individual progress closely with appropriate outcome measures including monitoring of adverse events. Further research is required using higher level trial design, increased numbers, in specific populations and with relevant outcome measures to both confirm effectiveness and clarify training schedules.
              • Record: found
              • Abstract: not found
              • Article: not found

              Wearable IMU-based real-time motion warning system for construction workers' musculoskeletal disorders prevention

                Author and article information

                Contributors
                laurensimpson412@gmail.com
                monish.maharaj@gmail.com
                ralphmobbs@hotmail.com
                Journal
                BMC Musculoskelet Disord
                BMC Musculoskelet Disord
                BMC Musculoskeletal Disorders
                BioMed Central (London )
                1471-2474
                8 February 2019
                8 February 2019
                2019
                : 20
                : 55
                Affiliations
                [1 ]NeuroSpine Surgery Research Group (NSURG), Sydney, Australia
                [2 ]ISNI 0000 0004 4902 0432, GRID grid.1005.4, Faculty of Medicine, , University of New South Wales, ; Sydney, Australia
                [3 ]GRID grid.415193.b, Department of Neurosurgery, , Prince of Wales Hospital, ; Sydney, Australia
                [4 ]GRID grid.415193.b, Prince of Wales Hospital, ; Randwick, NSW Australia
                Author information
                http://orcid.org/0000-0002-3555-7955
                Article
                2430
                10.1186/s12891-019-2430-6
                6368717
                30736775
                264355ae-ae16-4a2d-a2ea-aee0c7823b0c
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 August 2018
                : 22 January 2019
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2019

                Orthopedics
                wearable technology,postural assessment,patient outcomes,spine posture
                Orthopedics
                wearable technology, postural assessment, patient outcomes, spine posture

                Comments

                Comment on this article

                Related Documents Log