4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remarkable electronic and optical anisotropy of layered 1T’-WTe 2 2D materials

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anisotropic 2D materials exhibit novel optical, electrical and thermoelectric properties that open possibilities for a great variety of angle-dependent devices. Recently, quantitative research on 1T’-WTe 2 has been reported, revealing its fascinating physical properties such as non-saturating magnetoresistance, highly anisotropic crystalline structure and anisotropic optical/electrical response. Especially for its anisotropic properties, surging research interest devoted solely to understanding its structural and optical properties has been undertaken. Here we report quantitative, comprehensive work on the highly anisotropic, optical, electrical and optoelectronic properties of few-layer 1T’-WTe 2 by azimuth-dependent reflectance difference microscopy, DC conductance measurements, as well as polarization-resolved and wavelength-dependent optoelectrical measurements. The electrical conductance anisotropic ratio is found to ≈10 3 for a thin 1T’-WTe 2 film, while the optoelectronic anisotropic ratio is around 300 for this material. The polarization dependence of the photo-response is ascribed to the unique anisotropic in-plane crystal structure, consistent with the optical absorption anisotropy results. In general, 1T’-WTe 2, with its highly anisotropic electrical and photoresponsivity reported here, demonstrates a route to exploit the intrinsic anisotropy of 2D materials and the possibility to open up new ways for applications of 2D materials for light polarization detection.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Electronics based on two-dimensional materials.

          The compelling demand for higher performance and lower power consumption in electronic systems is the main driving force of the electronics industry's quest for devices and/or architectures based on new materials. Here, we provide a review of electronic devices based on two-dimensional materials, outlining their potential as a technological option beyond scaled complementary metal-oxide-semiconductor switches. We focus on the performance limits and advantages of these materials and associated technologies, when exploited for both digital and analog applications, focusing on the main figures of merit needed to meet industry requirements. We also discuss the use of two-dimensional materials as an enabling factor for flexible electronics and provide our perspectives on future developments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics.

            Graphene and transition metal dichalcogenides (TMDCs) are the two major types of layered materials under intensive investigation. However, the zero-bandgap nature of graphene and the relatively low mobility in TMDCs limit their applications. Here we reintroduce black phosphorus (BP), the most stable allotrope of phosphorus with strong intrinsic in-plane anisotropy, to the layered-material family. For 15-nm-thick BP, we measure a Hall mobility of 1,000 and 600 cm(2)V(-1)s(-1) for holes along the light (x) and heavy (y) effective mass directions at 120 K. BP thin films also exhibit large and anisotropic in-plane optical conductivity from 2 to 5 μm. Field-effect transistors using 5 nm BP along x direction exhibit an on-off current ratio exceeding 10(5), a field-effect mobility of 205 cm(2)V(-1)s(-1), and good current saturation characteristics all at room temperature. BP shows great potential for thin-film electronics, infrared optoelectronics and novel devices in which anisotropic properties are desirable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Energy Band-Gap Engineering of Graphene Nanoribbons

              We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying widths and different crystallographic orientations. The temperature dependent conductance measurements show larger energy gaps opening for narrower ribbons. The sizes of these energy gaps are investigated by measuring the conductance in the nonlinear response regime at low temperatures. We find that the energy gap scales inversely with the ribbon width, thus demonstrating the ability to engineer the band gap of graphene nanostructures by lithographic processes.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Beilstein J Nanotechnol
                Beilstein J Nanotechnol
                Beilstein Journal of Nanotechnology
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                2190-4286
                2019
                20 August 2019
                : 10
                : 1745-1753
                Affiliations
                [1 ]School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, No.12 Xiaoying East Road, Beijing, China
                [2 ]School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, 92 Weijin road, Tianjin 300072, China
                Author information
                https://orcid.org/0000-0003-4339-4348
                Article
                10.3762/bjnano.10.170
                6720729
                264eea6d-f867-460d-9712-5d2fdc4cbea5
                Copyright © 2019, Zhang et al.; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0). Please note that the reuse, redistribution and reproduction in particular requires that the authors and source are credited.

                The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano)

                History
                : 17 January 2019
                : 1 July 2019
                Categories
                Full Research Paper
                Nanoscience
                Nanotechnology

                1t’-wte2,2d material,anisotropic,light polarization,optoelectrical

                Comments

                Comment on this article