7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk- and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes.

          Methods

          Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data.

          Results

          Our results showed that both, milk- and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males.

          Conclusion

          Gender related variations in FA composition of rat liver PL were observed, and results have shown that those initial differences could be significantly modulated by the type of diet. Furthermore, the modulatory effects of milk- and fish-based diets on liver phospholipids FA profiles appeared to be sex-specific.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Liver lipid metabolism.

          The liver plays a key role in lipid metabolism. Depending on species it is, more or less, the hub of fatty acid synthesis and lipid circulation through lipoprotein synthesis. Eventually the accumulation of lipid droplets into the hepatocytes results in hepatic steatosis, which may develop as a consequence of multiple dysfunctions such as alterations in beta-oxidation, very low density lipoprotein secretion, and pathways involved in the synthesis of fatty acids. In addition an increased circulating pool of non-esterified fatty acid may also to be a major determinant in the pathogenesis fatty liver disease. This review also focuses on transcription factors such as sterol-regulatory-element-binding protein-1c and peroxisome proliferator-activated receptor alpha, which promote either hepatic fatty acid synthesis or oxidation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution, interconversion, and dose response of n−3 fatty acids in humans

            n-3 Fatty acids have important visual, mental, and cardiovascular health benefits throughout the life cycle. Biodistribution, interconversion, and dose response data are reviewed herein to provide a basis for more rational n-3 dose selections. Docosahexaenoic acid (DHA) is the principal n-3 fatty acid in tissues and is particularly abundant in neural and retinal tissue. Limited storage of the n-3 fatty acids in adipose tissue suggests that a continued dietary supply is needed. A large proportion of dietary alpha-linolenic acid (ALA) is oxidized, and because of limited interconversion of n-3 fatty acids in humans, ALA supplementation does not result in appreciable accumulation of long-chain n-3 fatty acids in plasma. Eicosapentaenoic acid (EPA) but not DHA concentrations in plasma increase in response to dietary EPA. Dietary DHA results in a dose-dependent, saturable increase in plasma DHA concentrations and modest increases in EPA concentrations. Plasma DHA concentrations equilibrate in approximately 1 mo and then remain at steady state throughout supplementation. DHA doses of approximately 2 g/d result in a near maximal plasma response. Both dietary DHA and EPA reduce plasma arachidonic acid concentrations. Tissue contents of DHA and EPA also increase in response to supplementation with these fatty acids. Human milk contents of DHA are dependent on diet, and infant DHA concentrations are determined by their dietary intake of this fatty acid. We conclude that the most predictable way to increase a specific long-chain n-3 fatty acid in plasma, tissues, or human milk is to supplement with the fatty acid of interest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults.

              The principal biological role of alpha-linolenic acid (alphaLNA; 18:3n-3) appears to be as a precursor for the synthesis of longer chain n-3 polyunsaturated fatty acids (PUFA). Increasing alphaLNA intake for a period of weeks to months results in an increase in the proportion of eicosapentaenoic acid (EPA; 20:5n-3) in plasma lipids, in erythrocytes, leukocytes, platelets and in breast milk but there is no increase in docosahexaenoic acid (DHA; 22:6n-3), which may even decline in some pools at high alphaLNA intakes. Stable isotope tracer studies indicate that conversion of alphaLNA to EPA occurs but is limited in men and that further transformation to DHA is very low. The fractional conversion of alphaLNA to the longer chain n-3 PUFA is greater in women which may be due to a regulatory effect of oestrogen. A lower proportion of alphaLNA is used for beta-oxidation in women compared with men. Overall, alphaLNA appears to be a limited source of longer chain n-3 PUFA in humans. Thus, adequate intakes of preformed long chain n-3 PUFA, in particular DHA, may be important for maintaining optimal tissue function. Capacity to up-regulate alphaLNA conversion in women may be important for meeting the demands of the fetus and neonate for DHA.
                Bookmark

                Author and article information

                Contributors
                +381 11 3031997 , slavica.rankovic.imr@gmail.com
                +381 11 3031997 , poptam@gmail.com
                +381 11 3031997 , minaizdravko@yahoo.com
                +381 11 3031997 , snjezana570.imr12@gmail.com
                +381 11 2078300 , mitomic@ibiss.bg.ac.rs
                +381 11 2078300 , djurdjica@ibiss.bg.ac.rs
                +381 11 2078300 , tovilovicg@ibiss.bg.ac.rs
                +381 11 3031997 , mglibetic@gmail.com
                Journal
                Lipids Health Dis
                Lipids Health Dis
                Lipids in Health and Disease
                BioMed Central (London )
                1476-511X
                19 May 2017
                19 May 2017
                2017
                : 16
                : 94
                Affiliations
                [1 ]ISNI 0000 0001 2166 9385, GRID grid.7149.b, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, , University of Belgrade, ; Tadeuša Košćuška 1, Belgrade, 11129 Serbia
                [2 ]ISNI 0000 0001 2166 9385, GRID grid.7149.b, Institute for Biological Research “Siniša Stanković”, , University of Belgrade, ; Bulevar despota Stefana 142, Belgrade, 11060 Serbia
                Article
                483
                10.1186/s12944-017-0483-9
                5437631
                28526084
                2652f80e-c9fb-4584-8ded-2a147dfa94cd
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 28 February 2017
                : 10 May 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100004564, Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja;
                Award ID: III41030
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Biochemistry
                fish based diet,milk based diet,fatty acids,gender,rats
                Biochemistry
                fish based diet, milk based diet, fatty acids, gender, rats

                Comments

                Comment on this article