11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcutaneous Auricular Vagus Nerve Stimulation at 20 Hz Improves Depression-Like Behaviors and Down-Regulates the Hyperactivity of HPA Axis in Chronic Unpredictable Mild Stress Model Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcutaneous auricular vagus nerve stimulation (taVNS) has gained growing interest as a non-invasive and non-pharmacologic treatment option in various neurological and psychiatric disorders. Animal experiments and clinical trials confirm that taVNS at the auricular concha region has beneficial effects on depression. However, stimulation frequencies are selected empirically, and there is no evidence showing that any frequency is superior to the others. This study explores antidepressant-like effects of three frequencies of taVNS on rats subjected to chronic unpredictable mild stress (CUMS). Sprague-Dawley rats were randomly divided into five groups, i.e., the control, CUMS, 5 Hz-taVNS, 20 Hz-taVNS, and 100 Hz-taVNS groups. The three different frequencies were administered during the 30-min taVNS procedure once a day for 28 consecutive days. Rats exposed to CUMS showed signs of depression-like behaviors, including reduction in sucrose preference and increased immobility time in forced swimming and open field tests as well as significant dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis as detected by plasma corticosterone and adrenocorticotropic hormone concentration. The 28 days’ taVNS sessions with three frequencies elicited quite different consequences. Although 20 Hz taVNS significantly reversed the depression-like behaviors and downregulated the hyperactivity of the HPA axis, neither 5 nor 100 Hz showed any antidepressant-like effect on CUMS-induced rat behavior. Based on these results, we propose that, out of the three frequencies for taVNS intervention on depression, 20 Hz may be the optimized frequency to have a better modulation effect on HPA axis function by activating the auricular vagus nerve.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Depression: a new animal model sensitive to antidepressant treatments.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gamma frequency entrainment attenuates amyloid load and modifies microglia.

            Changes in gamma oscillations (20-50 Hz) have been observed in several neurological disorders. However, the relationship between gamma oscillations and cellular pathologies is unclear. Here we show reduced, behaviourally driven gamma oscillations before the onset of plaque formation or cognitive decline in a mouse model of Alzheimer's disease. Optogenetically driving fast-spiking parvalbumin-positive (FS-PV)-interneurons at gamma (40 Hz), but not other frequencies, reduces levels of amyloid-β (Aβ)1-40 and Aβ 1-42 isoforms. Gene expression profiling revealed induction of genes associated with morphological transformation of microglia, and histological analysis confirmed increased microglia co-localization with Aβ. Subsequently, we designed a non-invasive 40 Hz light-flickering regime that reduced Aβ1-40 and Aβ1-42 levels in the visual cortex of pre-depositing mice and mitigated plaque load in aged, depositing mice. Our findings uncover a previously unappreciated function of gamma rhythms in recruiting both neuronal and glial responses to attenuate Alzheimer's-disease-associated pathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo–pituitary–adrenocortical responsiveness

              Appropriate regulatory control of the hypothalamo-pituitary-adrenocortical stress axis is essential to health and survival. The following review documents the principle extrinsic and intrinsic mechanisms responsible for regulating stress-responsive CRH neurons of the hypothalamic paraventricular nucleus, which summate excitatory and inhibitory inputs into a net secretory signal at the pituitary gland. Regions that directly innervate these neurons are primed to relay sensory information, including visceral afferents, nociceptors and circumventricular organs, thereby promoting 'reactive' corticosteroid responses to emergent homeostatic challenges. Indirect inputs from the limbic-associated structures are capable of activating these same cells in the absence of frank physiological challenges; such 'anticipatory' signals regulate glucocorticoid release under conditions in which physical challenges may be predicted, either by innate programs or conditioned stimuli. Importantly, 'anticipatory' circuits are integrated with neural pathways subserving 'reactive' responses at multiple levels. The resultant hierarchical organization of stress-responsive neurocircuitries is capable of comparing information from multiple limbic sources with internally generated and peripherally sensed information, thereby tuning the relative activity of the adrenal cortex. Imbalances among these limbic pathways and homeostatic sensors are likely to underlie hypothalamo-pituitary-adrenocortical dysfunction associated with numerous disease processes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                15 July 2020
                2020
                : 14
                : 680
                Affiliations
                [1] 1Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences , Beijing, China
                [2] 2China Academy of Chinese Medical Sciences , Beijing, China
                Author notes

                Edited by: Eugene Nalivaiko, The University of Newcastle, Australia

                Reviewed by: Bruno Bonaz, Centre Hospitalier Universitaire de Grenoble, France; Luca Carnevali, University of Parma, Italy

                This article was submitted to Autonomic Neuroscience, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2020.00680
                7378324
                32765210
                26692f5f-3caa-4768-b86d-fadff59fb8b6
                Copyright © 2020 Li, Wang, Gao, Guo, Zhang, Zhang, Wang, Zhang, Wang, Li, Yang and Rong.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 February 2020
                : 03 June 2020
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 50, Pages: 8, Words: 0
                Categories
                Neuroscience
                Original Research

                Neurosciences
                transcutaneous auricular vagus nerve stimulation (tavns),frequency,depressive-like behavior,hypothalamic-pituitary-adrenal (hpa) axis,chronic unpredictable mild stress (cums)

                Comments

                Comment on this article