113
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Geographical Inequalities in Use of Improved Drinking Water Supply and Sanitation across Sub-Saharan Africa: Mapping and Spatial Analysis of Cross-sectional Survey Data

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Using cross-sectional survey data, Rachel Pullan and colleagues map geographical inequalities in use of improved drinking water supply and sanitation across sub-Saharan Africa.

          Please see later in the article for the Editors' Summary

          Abstract

          Background

          Understanding geographic inequalities in coverage of drinking-water supply and sanitation (WSS) will help track progress towards universal coverage of water and sanitation by identifying marginalized populations, thus helping to control a large number of infectious diseases. This paper uses household survey data to develop comprehensive maps of WSS coverage at high spatial resolution for sub-Saharan Africa (SSA). Analysis is extended to investigate geographic heterogeneity and relative geographic inequality within countries.

          Methods and Findings

          Cluster-level data on household reported use of improved drinking-water supply, sanitation, and open defecation were abstracted from 138 national surveys undertaken from 1991–2012 in 41 countries. Spatially explicit logistic regression models were developed and fitted within a Bayesian framework, and used to predict coverage at the second administrative level (admin2, e.g., district) across SSA for 2012. Results reveal substantial geographical inequalities in predicted use of water and sanitation that exceed urban-rural disparities. The average range in coverage seen between admin2 within countries was 55% for improved drinking water, 54% for use of improved sanitation, and 59% for dependence upon open defecation. There was also some evidence that countries with higher levels of inequality relative to coverage in use of an improved drinking-water source also experienced higher levels of inequality in use of improved sanitation (rural populations r = 0.47, p = 0.002; urban populations r = 0.39, p = 0.01). Results are limited by the quantity of WSS data available, which varies considerably by country, and by the reliability and utility of available indicators.

          Conclusions

          This study identifies important geographic inequalities in use of WSS previously hidden within national statistics, confirming the necessity for targeted policies and metrics that reach the most marginalized populations. The presented maps and analysis approach can provide a mechanism for monitoring future reductions in inequality within countries, reflecting priorities of the post-2015 development agenda.

          Please see later in the article for the Editors' Summary

          Editors' Summary

          Background

          Access to a safe drinking-water supply (a water source that is protected from contamination) and to adequate sanitation facilities (toilets, improved latrines, and other facilities that prevent people coming into contact with human urine and feces) is essential for good health. Unimproved drinking-water sources and sanitation are responsible for 85% of deaths from diarrhea and 1% of the global burden of disease. They also increase the transmission of parasitic worms and other neglected tropical diseases. In 2000, world leaders set a target of reducing the proportion of the global population without access to safe drinking water and basic sanitation to half of the 1990 level by 2015 as part of Millennium Development Goal (MDG) 7 (“Ensure environmental sustainability”; the MDGs are designed to improve the social, economic, and health conditions in the world's poorest countries). Between 1990 and 2010, more than 2 billion people gained access to improved drinking-water sources and 1.8 billion gained access to improved sanitation. In 2011, 89% of the world's population had access to an improved drinking-water supply, 1% above the MDG target, and 64% had access to improved sanitation (the MDG target is 75%).

          Why Was This Study Done?

          Despite these encouraging figures, the WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation (JMP) estimates that, globally, 768 million people relied on unimproved drinking-water sources, 2.5 billion people did not use an improved sanitation facility, and more than 1 billion people (15% of the global population) were defecating in the open in 2011. The JMP estimates for 2011 also reveal national and sub-national inequalities in drinking-water supply and sanitation coverage but a better understanding of geographic inequalities is needed to track progress towards universal coverage of access to improved water and sanitation and to identify the populations that need the most help to achieve this goal. Here, the researchers use cross-sectional household survey data and modern statistical approaches to produce a comprehensive map of the coverage of improved drinking-water supply and improved sanitation at high spatial resolution for sub-Saharan Africa and to investigate geographic inequalities in coverage. Cross-sectional household surveys collect health and other information from households at a single time-point, including data on use of safe water and improved sanitation.

          What Did the Researchers Do and Find?

          The researchers extracted data on reported household use of an improved drinking-water supply (for example, a piped water supply), improved sanitation facilities (for example, a flushing toilet), and open defecation from 138 national household surveys undertaken between 1991 and 2012 in 41 countries in sub-Saharan Africa. They developed statistical models to fit these data and used the models to estimate coverage at the district (second administrative) level across sub-Saharan Africa for 2012. For ten countries, the estimated coverage of access to improved drinking water at the district level within individual countries ranged from less than 25% to more than 75%. Within-country ranges of a similar magnitude were estimated for coverage of access to improved sanitation (21 countries) and for open defecation (16 countries). Notably, rural households in the districts with the lowest coverage of access to improved water supply and sanitation within a country were 1.5–8 times less likely to access improved drinking water, 2–18 times less likely to access improved sanitation, and 2–80 times more likely to defecate in the open than rural households in districts with the best coverage. Finally, countries with high levels of inequality in improved drinking-water source coverage also experienced high levels of inequality in improved sanitation coverage.

          What Do These Findings Mean?

          These findings identify important geographic inequalities in the coverage of access to improved water sources and sanitation that were previously hidden within national statistics. The accuracy of these findings depends on the accuracy of the data on water supplies and sanitation provided by household surveys, on the researchers' definitions for improved water supplies and sanitation, and on their statistical methods. Nevertheless, these findings confirm that, to achieve universal coverage of access to improved drinking-water sources and sanitation, strategies that target the areas with the lowest coverage are essential. Moreover, the maps and the analytical approach presented here provide the means for monitoring future reductions in inequalities in the coverage of access to improved water sources and sanitation and thus reflect a major priority of the post-2015 development agenda.

          Additional Information

          Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001626.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Population Distribution, Settlement Patterns and Accessibility across Africa in 2010

            The spatial distribution of populations and settlements across a country and their interconnectivity and accessibility from urban areas are important for delivering healthcare, distributing resources and economic development. However, existing spatially explicit population data across Africa are generally based on outdated, low resolution input demographic data, and provide insufficient detail to quantify rural settlement patterns and, thus, accurately measure population concentration and accessibility. Here we outline approaches to developing a new high resolution population distribution dataset for Africa and analyse rural accessibility to population centers. Contemporary population count data were combined with detailed satellite-derived settlement extents to map population distributions across Africa at a finer spatial resolution than ever before. Substantial heterogeneity in settlement patterns, population concentration and spatial accessibility to major population centres is exhibited across the continent. In Africa, 90% of the population is concentrated in less than 21% of the land surface and the average per-person travel time to settlements of more than 50,000 inhabitants is around 3.5 hours, with Central and East Africa displaying the longest average travel times. The analyses highlight large inequities in access, the isolation of many rural populations and the challenges that exist between countries and regions in providing access to services. The datasets presented are freely available as part of the AfriPop project, providing an evidence base for guiding strategic decisions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the measurement of inequalities in health.

              This paper offers a critical appraisal of the various methods employed to date to measure inequalities in health. It suggests that only two of these--the slope index of inequality and the concentration index--are likely to present an accurate picture of socioeconomic inequalities in health. The paper also presents several empirical examples to illustrate of the dangers of using other measures such as the range, the Lorenz curve and the index of dissimilarity.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Med
                PLoS Med
                PLoS
                plosmed
                PLoS Medicine
                Public Library of Science (San Francisco, USA )
                1549-1277
                1549-1676
                April 2014
                8 April 2014
                : 11
                : 4
                Affiliations
                [1 ]Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
                [2 ]Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
                [3 ]Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
                [4 ]Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
                University of East Anglia, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RLP SJB. Performed the experiments: RLP. Analyzed the data: RLP. Wrote the first draft of the manuscript: RLP. Contributed to the writing of the manuscript: MCF PWG SJB. ICMJE criteria for authorship read and met: RLP MCF PWG SJB. Agree with manuscript results and conclusions: RLP MCF PWG SJB.

                Article
                PMEDICINE-D-14-00400
                10.1371/journal.pmed.1001626
                3979660
                24714528

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 17
                Funding
                This work is supported by the Bill & Melinda Gates Foundation (#OPP1033751) and the Wellcome Trust. SJB is supported by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science (098045), which also supports RLP. PWG is a Medical Research Council Career Development Fellow (#K00669X) and receives support from the Bill & Melinda Gates Foundation (#OPP1068048). MCF is supported by the SHARE research consortium, which is funded by the UK's Department for International Development. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Medicine and Health Sciences
                Health Care
                Environmental Health
                Socioeconomic Aspects of Health
                Public and Occupational Health
                Behavioral and Social Aspects of Health

                Medicine

                Comments

                Comment on this article