5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One Disease, Many Genes: Implications for the Treatment of Osteopetroses

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteopetrosis is a condition characterized by increased bone mass due to defects in osteoclast function or formation. In the last decades, the molecular dissection of osteopetrosis has unveiled a plethora of molecular players responsible for different forms of the disease, some of which present also primary neurodegeneration that severely limits the therapy. Hematopoietic stem cell transplantation can cure the majority of them when performed in the first months of life, highlighting the relevance of an early molecular diagnosis. However, clinical management of these patients is constrained by the severity of the disease and lack of a bone marrow niche that may delay immune reconstitution. Based on osteopetrosis genetic heterogeneity and disease severity, personalized therapies are required for patients that are not candidate to bone marrow transplantation. This review briefly describes the genetics of osteopetrosis, its clinical heterogeneity, current therapy and innovative approaches undergoing preclinical evaluation.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Osteopetrosis: genetics, treatment and new insights into osteoclast function.

          Osteopetrosis is a genetic condition of increased bone mass, which is caused by defects in osteoclast formation and function. Both autosomal recessive and autosomal dominant forms exist, but this Review focuses on autosomal recessive osteopetrosis (ARO), also known as malignant infantile osteopetrosis. The genetic basis of this disease is now largely uncovered: mutations in TCIRG1, CLCN7, OSTM1, SNX10 and PLEKHM1 lead to osteoclast-rich ARO (in which osteoclasts are abundant but have severely impaired resorptive function), whereas mutations in TNFSF11 and TNFRSF11A lead to osteoclast-poor ARO. In osteoclast-rich ARO, impaired endosomal and lysosomal vesicle trafficking results in defective osteoclast ruffled-border formation and, hence, the inability to resorb bone and mineralized cartilage. ARO presents soon after birth and can be fatal if left untreated. However, the disease is heterogeneous in clinical presentation and often misdiagnosed. This article describes the genetics of ARO and discusses the diagnostic role of next-generation sequencing methods. The management of affected patients, including guidelines for the indication of haematopoietic stem cell transplantation (which can provide a cure for many types of ARO), are outlined. Finally, novel treatments, including preclinical data on in utero stem cell treatment, RANKL replacement therapy and denosumab therapy for hypercalcaemia are also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects.

            X.-M. Dai (2002)
            The effects of colony-stimulating factor 1 (CSF-1), the primary regulator of mononuclear phagocyte production, are thought to be mediated by the CSF-1 receptor (CSF-1R), encoded by the c-fms proto-oncogene. To investigate the in vivo specificity of CSF-1 for the CSF-1R, the mouse Csf1r gene was inactivated. The phenotype of Csf1(-)/Csf1r(-) mice closely resembled the phenotype of CSF-1-nullizygous (Csf1(op)/Csf1(op)) mice, including the osteopetrotic, hematopoietic, tissue macrophage, and reproductive phenotypes. Compared with their wild-type littermates, splenic erythroid burst-forming unit and high-proliferative potential colony-forming cell levels in both Csf1(op)/Csf1(op) and Csf1(-)/Csf1r(-) mice were significantly elevated, consistent with a negative regulatory role of CSF-1 in erythropoiesis and the maintenance of primitive hematopoietic progenitor cells. The circulating CSF-1 concentration in Csf1r(-)/Csf1r(-) mice was elevated 20-fold, in agreement with the previously reported clearance of circulating CSF-1 by CSF-1R-mediated endocytosis and intracellular destruction. Despite their overall similarity, several phenotypic characteristics of the Csf1r(-)/Csf1r(-) mice were more severe than those of the Csf1(op)/Csf1(op) mice. The results indicate that all of the effects of CSF-1 are mediated via the CSF-1R, but that subtle effects of the CSF-1R could result from its CSF-1-independent activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kindlin-3 is essential for integrin activation and platelet aggregation.

              Integrin-mediated platelet adhesion and aggregation are essential for sealing injured blood vessels and preventing blood loss, and excessive platelet aggregation can initiate arterial thrombosis, causing heart attacks and stroke. To ensure that platelets aggregate only at injury sites, integrins on circulating platelets exist in a low-affinity state and shift to a high-affinity state (in a process known as integrin activation or priming) after contacting a wounded vessel. The shift is mediated through binding of the cytoskeletal protein Talin to the beta subunit cytoplasmic tail. Here we show that platelets lacking the adhesion plaque protein Kindlin-3 cannot activate integrins despite normal Talin expression. As a direct consequence, Kindlin-3 deficiency results in severe bleeding and resistance to arterial thrombosis. Mechanistically, Kindlin-3 can directly bind to regions of beta-integrin tails distinct from those of Talin and trigger integrin activation. We have therefore identified Kindlin-3 as a novel and essential element for platelet integrin activation in hemostasis and thrombosis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                19 February 2019
                2019
                : 10
                : 85
                Affiliations
                [1] 1San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital , Milan, Italy
                [2] 2Translational and Molecular Medicine (DIMET), University of Milano-Bicocca , Monza, Italy
                [3] 3The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit , Milan, Italy
                [4] 4Humanitas Research Hospital , Rozzano, Italy
                Author notes

                Edited by: Giacomina Brunetti, Università degli Studi di Bari, Italy

                Reviewed by: Nadia Rucci, University of L'Aquila, Italy; Emanuela Galliera, University of Milan, Italy

                *Correspondence: Anna Villa villa.anna@ 123456hsr.it

                This article was submitted to Bone Research, a section of the journal Frontiers in Endocrinology

                †Co-first authorship

                Article
                10.3389/fendo.2019.00085
                6389615
                30837952
                2676bb38-4fed-4969-a325-92b74a9e9c69
                Copyright © 2019 Penna, Capo, Palagano, Sobacchi and Villa.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 December 2018
                : 31 January 2019
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 88, Pages: 9, Words: 6569
                Funding
                Funded by: Fondazione Telethon 10.13039/501100002426
                Award ID: Grant C5
                Categories
                Endocrinology
                Mini Review

                Endocrinology & Diabetes
                bone disease,osteopetrosis,osteoclasts,hematopoietic stem cell transplantation,gene therapy

                Comments

                Comment on this article