18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The first aurochs genome reveals the breeding history of British and European cattle

      research-article
      Genome Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The first genome sequence of the extinct European wild aurochs reveals the genetic foundation of native British and Irish landraces of cattle.

          See related Research article: www.dx.doi.org/10.1186/s13059-015-0790-2

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic evidence for Near-Eastern origins of European cattle.

          The limited ranges of the wild progenitors of many of the primary European domestic species point to their origins further east in Anatolia or the fertile crescent. The wild ox (Bos primigenius), however, ranged widely and it is unknown whether it was domesticated within Europe as one feature of a local contribution to the farming economy. Here we examine mitochondrial DNA control-region sequence variation from 392 extant animals sampled from Europe, Africa and the Near East, and compare this with data from four extinct British wild oxen. The ancient sequences cluster tightly in a phylogenetic analysis and are clearly distinct from modern cattle. Network analysis of modern Bos taurus identifies four star-like clusters of haplotypes, with intra-cluster diversities that approximate to that expected from the time depth of domestic history. Notably, one of these clusters predominates in Europe and is one of three encountered at substantial frequency in the Near East. In contrast, African diversity is almost exclusively composed of a separate haplogroup, which is encountered only rarely elsewhere. These data provide strong support for a derived Near-Eastern origin for European cattle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reconstructing ancient genomes and epigenomes.

            Research involving ancient DNA (aDNA) has experienced a true technological revolution in recent years through advances in the recovery of aDNA and, particularly, through applications of high-throughput sequencing. Formerly restricted to the analysis of only limited amounts of genetic information, aDNA studies have now progressed to whole-genome sequencing for an increasing number of ancient individuals and extinct species, as well as to epigenomic characterization. Such advances have enabled the sequencing of specimens of up to 1 million years old, which, owing to their extensive DNA damage and contamination, were previously not amenable to genetic analyses. In this Review, we discuss these varied technical challenges and solutions for sequencing ancient genomes and epigenomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The genetic prehistory of domesticated cattle from their origin to the spread across Europe

              Background Cattle domestication started in the 9th millennium BC in Southwest Asia. Domesticated cattle were then introduced into Europe during the Neolithic transition. However, the scarcity of palaeogenetic data from the first European domesticated cattle still inhibits the accurate reconstruction of their early demography. In this study, mitochondrial DNA from 193 ancient and 597 modern domesticated cattle (Bos taurus) from sites across Europe, Western Anatolia and Iran were analysed to provide insight into the Neolithic dispersal process and the role of the local European aurochs population during cattle domestication. Results Using descriptive summary statistics and serial coalescent simulations paired with approximate Bayesian computation we find: (i) decreasing genetic diversity in a southeast to northwest direction, (ii) strong correlation of genetic and geographical distances, iii) an estimated effective size of the Near Eastern female founder population of 81, iv) that the expansion of cattle from the Near East and Anatolia into Europe does not appear to constitute a significant bottleneck, and that v) there is evidence for gene-flow between the Near Eastern/Anatolian and European cattle populations in the early phases of the European Neolithic, but that it is restricted after 5,000 BCE. Conclusions The most plausible scenario to explain these results is a single and regionally restricted domestication process of cattle in the Near East with subsequent migration into Europe during the Neolithic transition without significant maternal interbreeding with the endogenous wild stock. Evidence for gene-flow between cattle populations from Southwestern Asia and Europe during the earlier phases of the European Neolithic points towards intercontinental trade connections between Neolithic farmers. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0203-2) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                lorlando@snm.ku.dk
                Journal
                Genome Biol
                Genome Biol
                Genome Biology
                BioMed Central (London )
                1474-7596
                1474-760X
                26 October 2015
                26 October 2015
                2015
                : 16
                : 225
                Affiliations
                [ ]Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, ØsterVoldgade 5-7, 1350K Copenhagen, Denmark
                [ ]Université de Toulouse, University Paul Sabatier (UPS), Laboratoire AMIS, CNRS UMR 5288, 37 Allées Jules Guesde, 31000 Toulouse, France
                Article
                793
                10.1186/s13059-015-0793-z
                4620633
                26498490
                269d9898-3241-4ff9-9a9a-52562a65719d
                © Orlando. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                Categories
                Research Highlight
                Custom metadata
                © The Author(s) 2015

                Genetics
                Genetics

                Comments

                Comment on this article