22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Generation and Application of Patient-Derived Xenograft Model for Cancer Research

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Establishing an appropriate preclinical model is crucial for translational cancer research. The most common way that has been adopted by far is grafting cancer cell lines, derived from patients. Although this xenograft model is easy to generate, but has several limitations because this cancer model could not represent the unique features of each cancer patient sufficiently. Moreover, accumulating evidences demonstrate cancer is a highly heterogeneous disease so that a tumor is comprised of cancer cells with diverse characteristics. In attempt to avoid these discrepancies between xenograft model and patients’ tumor, a patient-derived xenograft (PDX) model has been actively generated and applied. The PDX model can be developed by the implantation of cancerous tissue from a patient’s tumor into an immune-deficient mouse directly, thereby it preserves both cell-cell interactions and tumor microenvironment. In addition, the PDX model has shown advantages as a preclinical model in drug screening, biomarker development and co-clinical trial. In this review, we will summarize the methodology and applications of PDX in detail, and cover critical issues for the development of this model for preclinical research.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts.

          To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new model of patient tumor-derived breast cancer xenografts for preclinical assays.

            To establish a panel of human breast cancer (HBC) xenografts in immunodeficient mice suitable for pharmacologic preclinical assays. 200 samples of HBCs were grafted into Swiss nude mice. Twenty-five transplantable xenografts were established (12.5%). Their characterization included histology, p53 status, genetic analysis by array comparative genomic hybridization, gene expression by Western blotting, and quantitative reverse transcription-PCR. Biological profiles of nine xenografts were compared with those of the corresponding patient's tumor. Chemosensitivities of 17 xenografts to a combination of Adriamycin and cyclophosphamide (AC), docetaxel, trastuzumab, and Degarelix were evaluated. Almost all patient tumors established as xenografts displayed an aggressive phenotype, i.e., high-grade, triple-negative status. The histology of the xenografts recapitulated the features of the original tumors. Mutation of p53 and inactivation of Rb and PTEN proteins were found in 83%, 30%, and 42% of HBC xenografts, respectively. Two HBCx had an ERBB2 (HER2) amplification. Large variations were observed in the expression of HER family receptors and in genomic profiles. Genomic alterations were close to those of original samples in paired tumors. Three xenografts formed lung metastases. A total of 15 of the 17 HBCx (88%) responded to AC, and 8 (47%) responded to docetaxel. One ERBB2-amplified xenograft responded to trastuzumab, whereas the other did not. The drug response of HBC xenografts was concordant with that of the patient's tumor in five of seven analyzable cases. This panel of breast cancer xenografts includes 15 triple-negative, one ER positive and 2 ERBB2 positive. This panel represents a useful preclinical tool for testing new agents and protocols and for further exploration of the biological basis of drug responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro.

              Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small-cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then reimplanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared with normal lung, primary tumors, xenografts, and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture and that was not regained when the tumors were reestablished as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development.
                Bookmark

                Author and article information

                Journal
                Cancer Res Treat
                Cancer Res Treat
                CRT
                Cancer Research and Treatment : Official Journal of Korean Cancer Association
                Korean Cancer Association
                1598-2998
                2005-9256
                January 2018
                13 September 2017
                : 50
                : 1
                : 1-10
                Affiliations
                [1 ]Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
                [2 ]Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
                Author notes
                Correspondence: Suhwan Chang, PhD Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea Tel: 82-2-3010-2095 Fax: 82-2-3010-8165 E-mail: suhwan.chang@ 123456amc.seoul.kr
                Article
                crt-2017-307
                10.4143/crt.2017.307
                5784646
                28903551
                26cfc060-ac8b-4b57-9bc8-9dd9f8918ebc
                Copyright © 2018 by the Korean Cancer Association

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 23 June 2017
                : 8 September 2017
                Categories
                Review Article

                Oncology & Radiotherapy
                patient derived xenograft,preclinical model,immune deficient mouse,personalized medicine

                Comments

                Comment on this article