19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A simple reduction process to synthesize MoO2/C composites with cage-like structure for high-performance lithium-ion batteries.

      Physical Chemistry Chemical Physics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large-scale MoO2/carbon composites with a cage-like nanostructure have been synthesized by a simple hydrothermal reduction process. During the hydrothermal process, ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O) was employed as starting material and ascorbic acid as a structure directing agent, reductive agent and carbon source. MoO2/C nanospheres with diameters of about 15-25 nm were interconnected to form a cage-like architecture. Time-dependent experiments illustrated that the cage-like structure was transformed from tightly packed MoO2 nanoparticles. Furthermore, with a water-soluble binder (sodium alginate), the cage-like MoO2/C composites exhibited a high discharge capacity and significantly improved cycling performance compared to previously reported MoO2-based anode materials. The electrodes with the MoO2/C composites can deliver a capacity of 692.5 mA h g(-1) after 80 charge-discharge cycles at a current density of 200 mA g(-1). After C-rate measurement, the battery still can maintain excellent cycling stability (about 550 mA h g(-1) reversible capacity retained even after 475 cycles). The excellent electrochemical performance can be ascribed to the cage-like structure, which integrates three advantages: porous structure, interconnected MoO2/C framework and small nano-crystals.

          Related collections

          Author and article information

          Journal
          23646353
          10.1039/c3cp44707c

          Comments

          Comment on this article