32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcranial Doppler Ultrasound: A Review of the Physical Principles and Major Applications in Critical Care

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transcranial Doppler (TCD) is a noninvasive ultrasound (US) study used to measure cerebral blood flow velocity (CBF-V) in the major intracranial arteries. It involves use of low-frequency (≤2 MHz) US waves to insonate the basal cerebral arteries through relatively thin bone windows. TCD allows dynamic monitoring of CBF-V and vessel pulsatility, with a high temporal resolution. It is relatively inexpensive, repeatable, and portable. However, the performance of TCD is highly operator dependent and can be difficult, with approximately 10–20% of patients having inadequate transtemporal acoustic windows. Current applications of TCD include vasospasm in sickle cell disease, subarachnoid haemorrhage (SAH), and intra- and extracranial arterial stenosis and occlusion. TCD is also used in brain stem death, head injury, raised intracranial pressure (ICP), intraoperative monitoring, cerebral microembolism, and autoregulatory testing.

          Related collections

          Most cited references88

          • Record: found
          • Abstract: found
          • Article: not found

          Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries.

          In this report the authors describe a noninvasive transcranial method of determining the flow velocities in the basal cerebral arteries. Placement of the probe of a range-gated ultrasound Doppler instrument in the temporal area just above the zygomatic arch allowed the velocities in the middle cerebral artery (MCA) to be determined from the Doppler signals. The flow velocities in the proximal anterior (ACA) and posterior (PCA) cerebral arteries were also recorded at steady state and during test compression of the common carotid arteries. An investigation of 50 healthy subjects by this transcranial Doppler method revealed that the velocity in the MCA, ACA, and PCA was 62 +/- 12, 51 +/0 12, and 44 +/- 11 cm/sec, respectively. This method is of particular value for the detection of vasospasm following subarachnoid hemorrhage and for evaluating the cerebral circulation in occlusive disease of the carotid and vertebral arteries.
            • Record: found
            • Abstract: found
            • Article: not found

            Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition?

            Vasospasm is an important complication of subarachnoid hemorrhage, but is variably defined in the literature. We studied 580 patients with subarachnoid hemorrhage and identified those with: (1) symptomatic vasospasm, defined as clinical deterioration deemed secondary to vasospasm after other causes were eliminated; (2) delayed cerebral ischemia (DCI), defined as symptomatic vasospasm, or infarction on CT attributable to vasospasm; (3) angiographic spasm, as seen on digital subtraction angiography; and (4) transcranial Doppler (TCD) spasm, defined as any mean flow velocity >120 cm/sec. Logistic regression analysis was performed to test the association of each definition of vasospasm with various hospital complications, and 3-month quality of life (sickness impact profile), cognitive status (telephone interview of cognitive status), instrumental activities of daily living (Lawton score), and death or severe disability at 3 months (modified Rankin scale score 4-6), after adjustment for covariates. Symptomatic vasospasm occurred in 16%, DCI in 21%, angiographic vasospasm in 31%, and TCD spasm in 45% of patients. DCI was statistically associated with more hospital complications (N=7; all P<0.05) than symptomatic spasm (N=4), angiographic spasm (N=1), or TCD vasospasm (N=1). Angiographic and TCD vasospasm were not related to any aspect of clinical outcome. Both symptomatic vasospasm and DCI were related to reduced instrumental activities of daily living, cognitive impairment, and poor quality of life (all P<0.05). However, only DCI was associated with death or severe disability at 3 months (adjusted OR, 2.2; 95% CI, 1.2-3.9; P=0.007). DCI is a more clinically meaningful definition than either symptomatic deterioration alone or the presence of arterial spasm by angiography or TCD.
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of static and dynamic cerebral autoregulation measurements.

              Cerebral autoregulation can be evaluated by measuring relative blood flow changes in response to a steady-state change in the blood pressure (static method) or during the response to a rapid change in blood pressure (dynamic method). The purpose of this study was to compare the results of the two methods in humans with both intact and impaired autoregulatory capacity. Using intraoperative transcranial Doppler sonography recordings from both middle cerebral arteries, we determined static and dynamic autoregulatory responses in 10 normal subjects undergoing elective surgical procedures. The changes in cerebrovascular resistance were estimated from the changes in cerebral blood flow velocity and arterial blood pressure in response to manipulations of blood pressure. Static autoregulation was determined by analyzing the response to a phenylephrine-induced rise in blood pressure, whereas rapid deflation of a blood pressure cuff around one thigh served as a stimulus for testing dynamic autoregulation. Both measurements were performed in patients with intact autoregulation during propofol anesthesia and again in the same patients after autoregulation had been impaired by administration of high-dose isoflurane. There was a significant reduction in autoregulatory capacity after the administration of high-dose isoflurane, which could be demonstrated using static (P < .0001) and dynamic (P < .0001) methods. The correlation between static or steady-state and dynamic autoregulation measurements was highly significant (r = .93, P < .0001). These data show that in normal human subjects measurement of dynamic autoregulation yields similar results as static testing of intact and pharmacologically impaired autoregulation.

                Author and article information

                Journal
                Int J Vasc Med
                Int J Vasc Med
                IJVM
                International Journal of Vascular Medicine
                Hindawi Publishing Corporation
                2090-2824
                2090-2832
                2013
                12 December 2013
                : 2013
                : 629378
                Affiliations
                1University Hospital South Manchester, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
                2Manchester Royal Infirmary, Oxford Road, Manchester M13 9WL, UK
                3Royal Oldham Hospital, Rochdale Road, Manchester OL1 2JH, UK
                Author notes

                Academic Editor: Aaron S. Dumont

                Author information
                http://orcid.org/0000-0003-0036-1896
                http://orcid.org/0000-0002-4730-7830
                http://orcid.org/0000-0002-1008-8275
                Article
                10.1155/2013/629378
                3876587
                24455270
                26ddd90c-fad1-4c60-9c8b-90f548892870
                Copyright © 2013 Jawad Naqvi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 7 August 2013
                : 10 November 2013
                Categories
                Review Article

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article

                Related Documents Log