5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dual delivery nanosystem for biomolecules. Formulation, characterization, and in vitro release

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Because of the biocompatible and biodegradable properties of poly (lactic-co-glycolic acid) (PLGA), nanoparticles (NPs) based on this polymer have been widely studied for drug/biomolecule delivery and long-term sustained-release. In this work, two different formulation methods for lysozyme-loaded PLGA NPs have been developed and optimized based on the double-emulsion (water/oil/water, W/O/W) solvent evaporation technique. They differ mainly in the phase in which the surfactant (Pluronic® F68) is added: water (W-F68) and oil (O-F68). The colloidal properties of these systems (morphology by SEM and STEM, hydrodynamic size by DLS and NTA, electrophoretic mobility, temporal stability in different media, protein encapsulation, release, and bioactivity) have been analyzed. The interaction surfactant-protein depending on the formulation procedure has been characterized by surface tension and dilatational rheology. Finally, cellular uptake by human mesenchymal stromal cells and cytotoxicity for both systems have been analyzed. Spherical hard NPs are made by the two methods However, in one case, they are monodisperse with diameters of around 120nm (O-F68), and in the other case, a polydisperse system of NPs with diameters between 100 and 500nm is found (W-F68). Protein encapsulation efficiency, release and bioactivity are maintained better by the W-F68 formulation method. This multimodal system is found to be a promising "dual delivery" system for encapsulating hydrophilic proteins with strong biological activity at the cell-surface and cytoplasmic levels.

          Related collections

          Author and article information

          Journal
          Colloids and Surfaces B: Biointerfaces
          Colloids and Surfaces B: Biointerfaces
          Elsevier BV
          09277765
          November 2017
          November 2017
          : 159
          : 586-595
          Article
          10.1016/j.colsurfb.2017.08.027
          28854415
          26e85e96-0964-4f82-afae-a5d16f0a2fa5
          © 2017

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article