4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nonlinear interactions of waves and tides in a subterranean estuary : Interactions of waves and tides

      , , , ,
      Geophysical Research Letters
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Seawater intrusion processes, investigation and management: Recent advances and future challenges

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of submarine groundwater discharge on the ocean.

            The exchange of groundwater between land and sea is a major component of the hydrological cycle. This exchange, called submarine groundwater discharge (SGD), is comprised of terrestrial water mixed with sea water that has infiltrated coastal aquifers. The composition of SGD differs from that predicted by simple mixing because biogeochemical reactions in the aquifer modify its chemistry. To emphasize the importance of mixing and chemical reaction, these coastal aquifers are called subterranean estuaries. Geologists recognize this mixing zone as a site of carbonate diagenesis and dolomite formation. Biologists have recognized that terrestrial inputs of nutrients to the coastal ocean may occur through subterranean processes. Further evidence of SGD comes from the distribution of chemical tracers in the coastal ocean. These tracers originate within coastal aquifers and reach the ocean through SGD. Tracer studies reveal that SGD provides globally important fluxes of nutrients, carbon, and metals to coastal waters.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantifying submarine groundwater discharge in the coastal zone via multiple methods.

              Submarine groundwater discharge (SGD) is now recognized as an important pathway between land and sea. As such, this flow may contribute to the biogeochemical and other marine budgets of near-shore waters. These discharges typically display significant spatial and temporal variability making assessments difficult. Groundwater seepage is patchy, diffuse, temporally variable, and may involve multiple aquifers. Thus, the measurement of its magnitude and associated chemical fluxes is a challenging enterprise. A joint project of UNESCO and the International Atomic Energy Agency (IAEA) has examined several methods of SGD assessment and carried out a series of five intercomparison experiments in different hydrogeologic environments (coastal plain, karst, glacial till, fractured crystalline rock, and volcanic terrains). This report reviews the scientific and management significance of SGD, measurement approaches, and the results of the intercomparison experiments. We conclude that while the process is essentially ubiquitous in coastal areas, the assessment of its magnitude at any one location is subject to enough variability that measurements should be made by a variety of techniques and over large enough spatial and temporal scales to capture the majority of these changing conditions. We feel that all the measurement techniques described here are valid although they each have their own advantages and disadvantages. It is recommended that multiple approaches be applied whenever possible. In addition, a continuing effort is required in order to capture long-period tidal fluctuations, storm effects, and seasonal variations.
                Bookmark

                Author and article information

                Journal
                Geophysical Research Letters
                Geophys. Res. Lett.
                Wiley-Blackwell
                00948276
                April 16 2015
                April 16 2015
                : 42
                : 7
                : 2277-2284
                Article
                10.1002/2015GL063643
                26f4ea87-69e9-45cc-94cf-781b8160c2ce
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1

                History

                Comments

                Comment on this article