29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interleukin-34 produced by human fibroblast-like synovial cells in rheumatoid arthritis supports osteoclastogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Interleukin-34 (IL-34) is a recently defined cytokine, showing a functional overlap with macrophage colony stimulating factor (M-CSF). This study was undertaken to address the expression of IL-34 in rheumatoid arthritis (RA) patients and to investigate its regulation and pathogenic role in RA.

          Methods

          IL-34 levels were determined in the RA synovium, synovial fluid (SF) and fibroblast-like synovial cells (FLS) by immunohistochemistry, real-time PCR, enzyme-linked immunosorbent assay and immunoblotting. RA activity was assessed using Disease Activity Score 28 (DAS28) activity in the plasma collected at baseline and one year after treatment. Conditioned media (CM) were prepared from RA FLS culture with tumor necrosis factor alpha (TNFα) for 24 hours and used for functional assay.

          Results

          IL-34 was expressed in the synovium, SF, and FLS from RA patients. The production of IL-34 in FLS was up-regulated by TNFα in RA samples compared with osteoarthritis (OA) patients. Importantly, the preferential induction of IL-34 rather than M-CSF by TNFα in RAFLS was mediated by the transcription factor nuclear factor kappa B (NF-κB) and activation of c-Jun N-terminal kinase (JNK). IL-34 elevation in plasma from RA patients was decreased after the administration of disease-modifying anti-rheumatic drugs (DMARDs) in accordance with a decrease in DAS28. CM from RAFLS cultured with TNFα promoted chemotactic migration of human peripheral blood mononuclear cells (PBMCs) and subsequent osteoclast (OC) formation, effects that were attenuated by an anti-IL-34 antibody.

          Conclusions

          These data provide novel information about the production of IL-34 in RA FLS and indicate that IL-34 is an additional osteoclastogenic factor regulated by TNFα in RA, suggesting a discrete role of IL-34 in inflammatory RA diseases.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.

          The revised criteria for the classification of rheumatoid arthritis (RA) were formulated from a computerized analysis of 262 contemporary, consecutively studied patients with RA and 262 control subjects with rheumatic diseases other than RA (non-RA). The new criteria are as follows: 1) morning stiffness in and around joints lasting at least 1 hour before maximal improvement; 2) soft tissue swelling (arthritis) of 3 or more joint areas observed by a physician; 3) swelling (arthritis) of the proximal interphalangeal, metacarpophalangeal, or wrist joints; 4) symmetric swelling (arthritis); 5) rheumatoid nodules; 6) the presence of rheumatoid factor; and 7) radiographic erosions and/or periarticular osteopenia in hand and/or wrist joints. Criteria 1 through 4 must have been present for at least 6 weeks. Rheumatoid arthritis is defined by the presence of 4 or more criteria, and no further qualifications (classic, definite, or probable) or list of exclusions are required. In addition, a "classification tree" schema is presented which performs equally as well as the traditional (4 of 7) format. The new criteria demonstrated 91-94% sensitivity and 89% specificity for RA when compared with non-RA rheumatic disease control subjects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TNF-mediated inflammatory disease.

            JR Bradley (2008)
            TNF was originally described as a circulating factor that can cause necrosis of tumours, but has since been identified as a key regulator of the inflammatory response. This review describes the known signalling pathways and cell biological effects of TNF, and our understanding of the role of TNF in human disease. TNF interacts with two different receptors, designated TNFR1 and TNFR2, which are differentially expressed on cells and tissues and initiate both distinct and overlapping signal transduction pathways. These diverse signalling cascades lead to a range of cellular responses, which include cell death, survival, differentiation, proliferation and migration. Vascular endothelial cells respond to TNF by undergoing a number of pro-inflammatory changes, which increase leukocyte adhesion, transendothelial migration and vascular leak and promote thrombosis. The central role of TNF in inflammation has been demonstrated by the ability of agents that block the action of TNF to treat a range of inflammatory conditions, including rheumatoid arthritis, ankylosing spondylitis, inflammatory bowel disease and psoriasis. The increased incidence of infection in patients receiving anti-TNF treatment has highlighted the physiological role of TNF in infectious diseases. 2007 Pathological Society of Great Britain and Ireland
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Colony-stimulating factors in inflammation and autoimmunity.

              Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
                Bookmark

                Author and article information

                Journal
                Arthritis Res Ther
                Arthritis Res. Ther
                Arthritis Research & Therapy
                BioMed Central
                1478-6354
                1478-6362
                2012
                20 January 2012
                : 14
                : 1
                : R14
                Affiliations
                [1 ]Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul 138-736, Korea
                [2 ]Department of Medicine, Graduate School, Cellular Dysfunction Research Center and BMIT, University of Ulsan College of Medicine, Seoul 138-736, Korea
                [3 ]Department of Natural Science, College of Natural Science, Sang-Ji University, Wonju 220-702, Korea
                [4 ]Department of Internal Medicine, Division of Rheumatology, University of Ulsan College of Medicine, Seoul 138-736, Korea
                [5 ]Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford CA 94305, USA
                Article
                ar3693
                10.1186/ar3693
                3392804
                22264405
                26ffdfa7-8641-4aec-9d63-080acbb6d525
                Copyright ©2012 Hwang et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 July 2011
                : 21 November 2011
                : 20 January 2012
                Categories
                Research Article

                Orthopedics
                Orthopedics

                Comments

                Comment on this article