12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Menadione degrades the optical quality and mitochondrial integrity of bovine crystalline lenses

      research-article
      1 , 2 , 3 ,
      Molecular Vision
      Molecular Vision

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          The crystalline lens is a unique cellular organ that performs metabolic processes while maintaining transparency for optical functionality. Mitochondria play a role in providing cells with aerobic respiration necessary for these metabolic processes. Using menadione, a mitochondria-specific inhibitor of the quinone family, and bovine lenses in vitro, this study was undertaken to determine whether a relationship exists between mitochondrial function and optical function.

          Methods

          Bovine lenses were treated with 50 μM, 200 μM, 600 μM, and 1,000 μM menadione and lens optical function, assessed as optical quality, was observed over 9 days. Confocal micrographs of mitochondria in superficial secondary fiber cells were also analyzed in 50 μM, 200 μM, and 600 μM menadione-treated lenses over 48 h.

          Results

          A decrease in lens optical quality was observed in a dose-dependent manner within 24 h for the 200 µM- (p=0.0422), 600 µM- (p<0.0001), and 1,000 μM- (p<0.0001) treated lenses. No change in optical quality was observed for the 50 μM-treated lenses. Analysis of confocal micrographs indicated a trend of shorter mitochondria for 200 μM- and 600 µM-treated lenses with time and analysis of the distributions of mitochondrial lengths indicated a relative increase in the number of shorter mitochondria with higher doses of, and longer exposures to, menadione.

          Conclusions

          The data show that menadione has a detrimental effect on mitochondrial integrity and this change is associated with degradation of optical quality, suggesting a possible link between mitochondrial function and optical function.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage

          The dynamin-related protein Opa1 is localized to the mitochondrial intermembrane space, where it facilitates fusion between mitochondria. Apoptosis causes Opa1 release into the cytosol and causes mitochondria to fragment. Loss of mitochondrial membrane potential also causes mitochondrial fragmentation but not Opa1 release into the cytosol. Both conditions induce the proteolytic cleavage of Opa1, suggesting that mitochondrial fragmentation is triggered by Opa1 inactivation. The opposite effect was observed with knockdown of the mitochondrial intermembrane space protease Yme1. Knockdown of Yme1 prevents the constitutive cleavage of a subset of Opa1 splice variants but does not affect carbonyl cyanide m-chlorophenyl hydrazone or apoptosis-induced cleavage. Knockdown of Yme1 also increases mitochondrial connectivity, but this effect is independent of Opa1 because it also occurs in Opa1 knockdown cells. We conclude that Yme1 constitutively regulates a subset of Opa1 isoforms and an unknown mitochondrial morphology protein, whereas the loss of membrane potential induces the further proteolysis of Opa1.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hormesis in aging.

            Hormesis in aging is represented by mild stress-induced stimulation of protective mechanisms in cells and organisms resulting in biologically beneficial effects. Single or multiple exposure to low doses of otherwise harmful agents, such as irradiation, food limitation, heat stress, hypergravity, reactive oxygen species and other free radicals have a variety of anti-aging and longevity-extending hormetic effects. Detailed molecular mechanisms that bring about the hormetic effects are being increasingly understood, and comprise a cascade of stress response and other pathways of maintenance and repair. Although the extent of immediate hormetic effects after exposure to a particular stress may only be moderate, the chain of events following initial hormesis leads to biologically amplified effects that are much larger, synergistic and pleiotropic. A consequence of hormetic amplification is an increase in the homeodynamic space of a living system in terms of increased defence capacity and reduced load of damaged macromolecules. Hormetic strengthening of the homeodynamic space provides wider margins for metabolic fluctuation, stress tolerance, adaptation and survival. Hormesis thus counter-balances the progressive shrinkage of the homeodynamic space, which is the ultimate cause of aging, diseases and death. Healthy aging may be achieved by hormesis through mild and periodic, but not severe or chronic, physical and mental challenges, and by the use of nutritional hormesis incorporating mild stress-inducing molecules called hormetins. The established scientific foundations of hormesis are ready to pave the way for new and effective approaches in aging research and intervention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Theory of transparency of the eye.

              The present work relates the turbidity of the eye to microscopic spatial fluctuations in its index of refraction. Such fluctuations are indicated in electron microscope photographs. By examining the superposition of phases of waves scattered from each point in the medium, we provide a mathematical demonstration of the Bragg reflection principle which we have recently used in the interpretation of experimental investigations: namely, that the scattering of light is produced only by those fluctuations whose fourier components have a wavelength equal to or larger than one half the wavelength of light in the medium. This consideration is applied first to the scattering of light from collagen fibers in the normal cornea. We demonstrate physically and quantitatively that a limited correlation in the position of near neighbor collagen fibers leads to corneal transparency. Next, the theory is extended to predict the turbidity of swollen, pathologic corneas, wherein the normal distribution of collagen fibers is disturbed by the presence of numerous lakes-regions where collagen is absent. A quantitative expression for the turbidity of the swollen cornea is given in terms of the size and density of such lakes. Finally, the theory is applied to the case of the cataractous lens. We assume that the cataracts are produced by aggregation of the normal lens proteins into an albuminoid fraction and provide a formula for the lens turbidity in terms of the molecular weight and index of refraction of the individual albuminoid macromolecules. We provide a crude estimate of the mean albuminoid molecular weight required for lens opacity.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2011
                26 January 2011
                : 17
                : 270-278
                Affiliations
                [1 ]Institute of Medical Science, University of Toronto, Toronto, ON, Canada, and Department of Ophthalmology and Vision Sciences, Toronto Western Hospital, Toronto, ON Canada
                [2 ]Genentech Inc, South San Francisco, CA
                [3 ]School of Optometry, University of Waterloo, Waterloo, ON, Canada
                Author notes
                Correspondence to: Vivian Choh, School of Optometry, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada N2L 3G1; Phone: (519) 888-4567 x35005; FAX: (519) 725-0784; email: vchoh@ 123456uwaterloo.ca
                Article
                33 2010MOLVIS0511
                3030608
                21283527
                272067ea-35b9-4fe2-940c-b66d2b9ad5f0
                Copyright © 2011 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 November 2010
                : 19 January 2011
                Categories
                Research Article
                Custom metadata
                Export to XML
                Choh

                Vision sciences
                Vision sciences

                Comments

                Comment on this article