42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of 18 Ancestral and Horizontally-Acquired Regulatory Proteins upon the Transcriptome and sRNA Landscape of Salmonella enterica serovar Typhimurium

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We know a great deal about the genes used by the model pathogen Salmonella enterica serovar Typhimurium to cause disease, but less about global gene regulation. New tools for studying transcripts at the single nucleotide level now offer an unparalleled opportunity to understand the bacterial transcriptome, and expression of the small RNAs (sRNA) and coding genes responsible for the establishment of infection. Here, we define the transcriptomes of 18 mutants lacking virulence-related global regulatory systems that modulate the expression of the SPI1 and SPI2 Type 3 secretion systems of S. Typhimurium strain 4/74. Using infection-relevant growth conditions, we identified a total of 1257 coding genes that are controlled by one or more regulatory system, including a sub-class of genes that reflect a new level of cross-talk between SPI1 and SPI2. We directly compared the roles played by the major transcriptional regulators in the expression of sRNAs, and discovered that the RpoS (σ 38) sigma factor modulates the expression of 23% of sRNAs, many more than other regulatory systems. The impact of the RNA chaperone Hfq upon the steady state levels of 280 sRNA transcripts is described, and we found 13 sRNAs that are co-regulated with SPI1 and SPI2 virulence genes. We report the first example of an sRNA, STnc1480, that is subject to silencing by H-NS and subsequent counter-silencing by PhoP and SlyA. The data for these 18 regulatory systems is now available to the bacterial research community in a user-friendly online resource, SalComRegulon.

          Author Summary

          The transcriptional networks and the functions of small regulatory RNAs of Salmonella enterica serovar Typhimurium are being studied intensively. S. Typhimurium is becoming the ideal model pathogen for linking transcriptional and post-transcriptional gene regulation to bacterial virulence. Here, we systematically defined the regulatory factors responsible for controlling the expression of S. Typhimurium coding genes and sRNAs under infection-relevant growth conditions. As well as confirming published regulatory inputs for Salmonella pathogenicity islands, such as the positive role played by Fur in the expression of SPI1, we report, for the first time, the global impact of the FliZ, HilE and PhoB/R transcription factors and identify 124 sRNAs that belong to virulence-associated regulons. We found a subset of genes of known and unknown function that are regulated by both HilD and SsrB, highlighting the cross-talk mechanisms that control Salmonella virulence. An integrative analysis of the regulatory datasets revealed 5 coding genes of unknown function that may play novel roles in virulence. We hope that the SalComRegulon resource will be a dynamic database that will be constantly updated to inspire new hypothesis-driven experimentation, and will contribute to the construction of a comprehensive transcriptional network for S. Typhimurium.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          The global burden of nontyphoidal Salmonella gastroenteritis.

          To estimate the global burden of nontyphoidal Salmonella gastroenteritis, we synthesized existing data from laboratory-based surveillance and special studies, with a hierarchical preference to (1) prospective population-based studies, (2) "multiplier studies," (3) disease notifications, (4) returning traveler data, and (5) extrapolation. We applied incidence estimates to population projections for the 21 Global Burden of Disease regions to calculate regional numbers of cases, which were summed to provide a global number of cases. Uncertainty calculations were performed using Monte Carlo simulation. We estimated that 93.8 million cases (5th to 95th percentile, 61.8-131.6 million) of gastroenteritis due to Salmonella species occur globally each year, with 155,000 deaths (5th to 95th percentile, 39,000-303,000 deaths). Of these, we estimated 80.3 million cases were foodborne. Salmonella infection represents a considerable burden in both developing and developed countries. Efforts to reduce transmission of salmonellae by food and other routes must be implemented on a global scale.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant.

            Two cassettes with tetracycline-resistance (TcR) and kanamycin-resistance (KmR) determinants have been developed for the construction of insertion and deletion mutants of cloned genes in Escherichia coli. In both cassettes, the resistance determinants are flanked by the short direct repeats (FRT sites) required for site-specific recombination mediated by the yeast Flp recombinase. In addition, a plasmid with temperature-sensitive replication for temporal production of the Flp enzyme in E. coli has been constructed. After a gene disruption or deletion mutation is constructed in vitro by insertion of one of the cassettes into a given gene, the mutated gene is transferred to the E. coli chromosome by homologous recombination and selection for the antibiotic resistance provided by the cassette. If desired, the resistance determinant can subsequently be removed from the chromosome in vivo by Flp action, leaving behind a short nucleotide sequence with one FRT site and with no polar effect on downstream genes. This system was applied in the construction of an E. coli endA deletion mutation which can be transduced by P1 to the genetic background of interest using TcR as a marker. The transductant can then be freed of the TcR if required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC.

              We describe a new cloning method, sequence and ligation-independent cloning (SLIC), which allows the assembly of multiple DNA fragments in a single reaction using in vitro homologous recombination and single-strand annealing. SLIC mimics in vivo homologous recombination by relying on exonuclease-generated ssDNA overhangs in insert and vector fragments, and the assembly of these fragments by recombination in vitro. SLIC inserts can also be prepared by incomplete PCR (iPCR) or mixed PCR. SLIC allows efficient and reproducible assembly of recombinant DNA with as many as 5 and 10 fragments simultaneously. SLIC circumvents the sequence requirements of traditional methods and functions much more efficiently at very low DNA concentrations when combined with RecA to catalyze homologous recombination. This flexibility allows much greater versatility in the generation of recombinant DNA for the purposes of synthetic biology.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                26 August 2016
                August 2016
                : 12
                : 8
                : e1006258
                Affiliations
                [1 ]Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Ireland
                [2 ]Institute of Microbiology, ETH Zürich, Zürich, Switzerland
                [3 ]Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca, Morelos, Mexico
                [4 ]Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College, Dublin, Ireland
                [5 ]Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
                Universidad de Sevilla, SPAIN
                Author notes

                The authors have declared that no competing interests exist.

                • Conceived and designed the experiments: AMC CK MD WDH JLP JCDH.

                • Performed the experiments: AMC CK.

                • Analyzed the data: AMC CK JLP JCDH.

                • Contributed reagents/materials/analysis tools: MD WDH SKS KH.

                • Wrote the paper: AMC CK MD WDH JLP SKS KH JCDH.

                Author information
                http://orcid.org/0000-0003-0461-1530
                Article
                PGENETICS-D-16-00654
                10.1371/journal.pgen.1006258
                5001712
                27564394
                27380d5b-b0e9-43cc-a79f-1da10e3af51e
                © 2016 Colgan et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 March 2016
                : 25 July 2016
                Page count
                Figures: 11, Tables: 4, Pages: 42
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001602, Science Foundation Ireland;
                Award ID: 08/IN.1/B2104
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100001602, Science Foundation Ireland;
                Award ID: 07/IN.1/B918
                Award Recipient :
                This work was supported by the Stokes Professorial Fellowship and Principal Investigator grant awarded to JCDH by Science Foundation Ireland (Ref 08/IN.1/B2104 and 07/IN.1/B918; www.sfi.ie). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Gene Expression
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Salmonella
                Salmonella Typhimurium
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Salmonella Typhimurium
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Salmonella
                Salmonella Typhimurium
                Biology and Life Sciences
                Organisms
                Bacteria
                Enterobacteriaceae
                Salmonella
                Salmonella Typhimurium
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Biology and Life Sciences
                Genetics
                Gene Types
                Regulator Genes
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Post-Transcriptional Gene Regulation
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Regulons
                Biology and life sciences
                Genetics
                Gene expression
                DNA transcription
                Biology and life sciences
                Biochemistry
                Proteins
                DNA-binding proteins
                Transcription Factors
                Biology and Life Sciences
                Genetics
                Gene Expression
                Gene Regulation
                Transcription Factors
                Biology and Life Sciences
                Biochemistry
                Proteins
                Regulatory Proteins
                Transcription Factors
                Custom metadata
                The RNA-seq data generated from this study are deposited at NCBI GEO under the accession numbers GSM2091439 to GSM2091466, and can be accessed at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79314.

                Genetics
                Genetics

                Comments

                Comment on this article