Let the complexity of a closed manifold M be the minimal number of simplices in a triangulation of M. Such a quantity is clearly submultiplicative with respect to finite coverings, and by taking the infimum on all finite coverings of M normalized by the covering degree we can promote it to a multiplicative invariant, a characteristic number already considered by Milnor and Thurston, which call the "stable complexity" of M. We study here the relation between the stable complexity of M and Gromov's simplicial volume ||M||. It is immediate to show that ||M|| is smaller or equal than the stable complexity of M and it is natural to ask whether the two quantities coincide on aspherical manifolds with residually finite fundamental group. We show that this is not always the case: there is a constant C_n<1 such that ||M|| is smaller than C_n times the stable complexity for any hyperbolic manifold M of dimension at least 4. The question in dimension 3 is still open in general. We prove that the stable complexity equals ||M|| for any aspherical irreducible 3-manifold M whose JSJ decomposition consists of Seifert pieces and/or hyperbolic pieces commensurable with the figure-eight knot complement. The equality holds for all closed hyperbolic 3-manifolds if a particular three-dimensional version of the Ehrenpreis conjecture is true.