43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Embryonic Stem Cell Lines Model Experimental Human Cytomegalovirus Latency

      research-article
      ,
      mBio
      American Society of Microbiology

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Herpesviruses are highly successful pathogens that persist for the lifetime of their hosts primarily because of their ability to establish and maintain latent infections from which the virus is capable of productively reactivating. Human cytomegalovirus (HCMV), a betaherpesvirus, establishes latency in CD34 + hematopoietic progenitor cells during natural infections in the body. Experimental infection of CD34 + cells ex vivo has demonstrated that expression of the viral gene products that drive productive infection is silenced by an intrinsic immune defense mediated by Daxx and histone deacetylases through heterochromatinization of the viral genome during the establishment of latency. Additional mechanistic details about the establishment, let alone maintenance and reactivation, of HCMV latency remain scarce. This is partly due to the technical challenges of CD34 + cell culture, most notably, the difficulty in preventing spontaneous differentiation that drives reactivation and renders them permissive for productive infection. Here we demonstrate that HCMV can establish, maintain, and reactivate in vitro from experimental latency in cultures of human embryonic stem cells (ESCs), for which spurious differentiation can be prevented or controlled. Furthermore, we show that known molecular aspects of HCMV latency are faithfully recapitulated in these cells. In total, we present ESCs as a novel, tractable model for studies of HCMV latency.

          IMPORTANCE

          Human cytomegalovirus (HCMV) is a significant human pathogen that is known for causing birth defects, blindness in AIDS patients, and organ transplant rejection. The ability of HCMV to cause disease is dependent upon its capacity to establish and maintain latent infections. Very few of the molecular mechanisms of latency have been elucidated, due in part to the lack of a tractable cell culture model. Here we present embryonic stem cells (ESCs) as a model for HCMV latency, one in which genome maintenance and reactivation could be closely monitored. HCMV establishes latency in ESCs in the same fashion as it does in CD34 + cells, the currently favored in vitro model. Hence, ESCs represent a novel model with unique properties, such as the ability to be genetically manipulated and cultured indefinitely in an undifferentiated state, that will facilitate the mechanistic examination of certain aspects of HCMV latency that have proven technically challenging in other model systems.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: not found
          • Article: not found

          Feeder-independent culture of human embryonic stem cells.

            • Record: found
            • Abstract: found
            • Article: not found

            Human cytomegalovirus sequences expressed in latently infected individuals promote a latent infection in vitro.

            Latency enables human cytomegalovirus (HCMV) to persist in the hematopoietic cells of infected individuals indefinitely and prevents clearance of the pathogen. Despite its critical importance to the viral infectious cycle, viral mechanisms that contribute to latency have not been identified. We compared the ability of low-passage clinical and laboratory-adapted strains of HCMV to establish a latent infection in primary human CD34(+) cells. The low-passage strains, Toledo and FIX, established an infection with the hallmarks of latency, whereas the laboratory strains, AD169 and Towne, replicated producing progeny virus. We hypothesized that ULb' region of the genome, which is unique to low-passage strains, may encode a latency-promoting activity. We created and analyzed recombinant viruses lacking segments or individual open reading frames (ORFs) in the ULb' region. One 5-kb segment, and more specifically the UL138 ORF, was required for HCMV to establish and/or maintain a latent infection in hematopoietic progenitor cells infected in vitro. This is the first functional demonstration of a virus-coded sequence required for HCMV latency. Importantly, UL138 RNA was expressed in CD34(+) cells and monocytes from HCMV-seropositive, healthy individuals. UL138 might be a target for antivirals against latent virus.
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections.

              Several viruses, including human cytomegalovirus (HCMV), encode proteins that colocalize with a cellular subnuclear structure known as ND10. Since only viral DNA deposited at ND10 initiates transcription, ND10 structures were hypothesized to be essential for viral replication. On the other hand, interferon treatment induces an up-regulation of ND10 structures and viruses have evolved polypeptides that disperse the dot-like accumulation of ND10 proteins, suggesting that ND10 could also be part of an intrinsic defense mechanism. In order to obtain evidence for either a proviral or an antiviral function of ND10, we generated primary human fibroblasts with a stable, short interfering RNA-mediated knockdown (kd) of PML. In these cells, other ND10-associated proteins like hDaxx showed a diffuse nuclear distribution. Interestingly, we observed that HCMV infection induced the de novo formation of ND10-like hDaxx and Sp100 accumulations that colocalized with IE2 and were disrupted, in the apparent absence of PML, in an IE1-dependent manner during the first hours after infection. Furthermore, infection of PML-kd cells with wild-type HCMV at a low multiplicity of infection resulted in enhanced replication. In particular, a significantly increased plaque formation was detected, suggesting that more cells are able to support initiation of replication in the absence of PML. While there was no difference in viral DNA uptake between PML-kd and control cells, we observed a considerable increase in the number of immediate-early (IE) protein-positive cells, indicating that the depletion of PML augments the initiation of viral IE gene expression. These results strongly suggest that PML functions as part of an intrinsic immune mechanism against cytomegalovirus infections.

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                28 May 2013
                May-Jun 2013
                : 4
                : 3
                : e00298-13
                Affiliations
                [1]Institute for Molecular Virology and McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
                Author notes
                Address correspondence to Robert F. Kalejta, rfkalejta@ 123456wisc.edu .

                Editor Terence Dermody, Vanderbilt University School of Medicine

                Article
                mBio00298-13
                10.1128/mBio.00298-13
                3663570
                23716573
                273e60ac-2538-45f3-875c-ded911711730
                Copyright © 2013 Penkert and Kalejta

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 18 April 2013
                : 9 May 2013
                Page count
                Pages: 9
                Categories
                Research Article
                Custom metadata
                May/June 2013

                Life sciences
                Life sciences

                Comments

                Comment on this article

                Related Documents Log