7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead.

          Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p.) or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl)- N-ethyl-2-bromobenzylamine hydrochloride (DSP-4), a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN), globus pallidus (GP), and substantia nigra pars reticulata (SNr). At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin) and their metabolites has been determined using HPLC.

          Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and bursty discharge patterns of STN neurons. Neither lead nor DSP-4 treatments changed the firing rate and the pattern of GP and SNr neurons.

          Conclusions: Our findings provide evidence that lead represents a risk factor for inducing parkinsonism-like deficits. As the motor deficits induced by lead were not improved by L-DOPA, we suggest that the deficits may be due to the depletion of noradrenaline and the parallel disorganization of STN neuronal activity.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury.

          The purpose of the present experiment was to examine the effectiveness of a modified rotarod test in detecting motor deficits following mild and moderate central fluid percussion brain injury. In addition, this investigation compared the performance of the rotarod task with two other commonly used measures of motor function after brain injury (beam-balance and beam-walking latencies). Rats were either injured with a mild (n = 14) or moderate (n = 8) level of fluid percussion injury or were surgically prepared but not injured (n = 8). All rats were assessed on all tasks for 5 days following their respective treatments. Results revealed that both the mild and moderate injury levels produced significant deficits in the ability of the animals to perform the rotarod task. Performance on the beam-balance and beam-walking tasks were not significantly impaired at the mild injury level. It was only at the moderate injury level that the beam-balance and beam-walking tasks detected deficits in motor performance. This result demonstrated that the rotarod task was a sensitive index of injury-induced motor dysfunction following even mild fluid percussion injury. A power analysis of the three tasks indicated that statistically significant group differences could be obtained with the rotarod task with much smaller sample sizes than with the beam-balance and beam-walking tasks. Performance on the rotarod, beam-walk, and beam-balance tasks were compared and evaluated by a multivariate stepdown analysis (multiple analysis of variance followed by univariate analyses of covariance). This analysis indicated that the rotarod task measures aspects of motor impairment that are not assessed by either the beam-balance or beam-walking latency. These findings suggest that compared to the beam-balance and beam-walking tasks, the rotarod task is a more sensitive and efficient index for assessing motor impairment produced by brain injury.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Neuropathology of Parkinson's disease.

            L Forno (1996)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys.

              Besides being important occupational hazards, lead and cadmium are nowadays metals of great environmental concern. Both metals, without any physiological functions, can induce serious adverse health effects in various organs and tissues. Although Pb and Cd are non-redox metals, one of the important mechanisms underlying their toxicity is oxidative stress induction as a result of the generation of reactive species and/or depletion of the antioxidant defense system. Considering that the co-exposure to both metals is a much more realistic scenario, the effects of these metals on oxidative status when simultaneously present in the organism have become one of the contemporary issues in toxicology. This paper reviews short and long term studies conducted on Pb or Cd-induced oxidative stress in blood, liver and kidneys as the most prominent target organs of the toxicity of these metals and proposes the possible molecular mechanisms of the observed effects. The review is also focused on the results obtained for the effects of the combined treatment with Pb and Cd on oxidative status in target organs and on the mechanisms of their possible interactions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                19 March 2018
                2018
                : 12
                : 173
                Affiliations
                [1] 1Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeau , Bordeaux, France
                [2] 2Centre National de la Recherche Scientifique, Institut des Maladies Neurodégénératives, UMR 5293 , Bordeaux, France
                [3] 3Faculté des Sciences, Equipe Rythmes Biologiques et Environnement, Université Mohammed V , Rabat, Morocco
                Author notes

                Edited by: Marco Antonio Maximo Prado, University of Western Ontario, Canada

                Reviewed by: Giuseppe Gangarossa, Paris Diderot University, France; Patrícia Maciel, Escola de Medicina da Universidade do Minho, Portugal

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2018.00173
                5868125
                29403346
                27414d72-b856-425d-a4a7-8b798368108a
                Copyright © 2018 Sabbar, Delaville, De Deurwaerdère, Lakhdar-Ghazal and Benazzouz.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 September 2017
                : 05 March 2018
                Page count
                Figures: 6, Tables: 1, Equations: 1, References: 77, Pages: 13, Words: 9961
                Categories
                Neuroscience
                Original Research

                Neurosciences
                lead,parkinsonism,subthalamic nucleus,globus pallidus,pars reticulata of substantia nigra,noradrenaline,dopamine,electrophysiology

                Comments

                Comment on this article