9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phase Separation by the SARS-CoV-2 Nucleocapsid Protein: Consensus and Open Questions

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In response to the recent SARS-CoV-2 pandemic, a number of labs across the world have re-allocated their time and resources to better our understanding of the virus. For some viruses, including SARS-CoV-2, viral proteins can undergo phase separation: a biophysical process often related to the partitioning of protein and RNA into membraneless organelles in vivo. In this review we discuss emerging observations of phase separation by the SARS-CoV-2 nucleocapsid (N) protein – an essential viral protein required for viral replication – and the possible in vivo functions that have been proposed for N-protein phase separation, including viral replication, viral genomic RNA packaging, and modulation of host-cell response to infection. Additionally, since a relatively large number of studies examining SARS-CoV-2 N-protein phase separation have been published in a short span of time, we take advantage of this situation to compare results from similar experiments across studies. Our evaluation highlights potential strengths and pitfalls of drawing conclusions from a single set of experiments, as well as the value of publishing overlapping scientific observations performed simultaneously by multiple labs.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19

          Summary Viral pandemics, such as the one caused by SARS-CoV-2, pose an imminent threat to humanity. Because of its recent emergence, there is a paucity of information regarding viral behavior and host response following SARS-CoV-2 infection. Here we offer an in-depth analysis of the transcriptional response to SARS-CoV-2 compared with other respiratory viruses. Cell and animal models of SARS-CoV-2 infection, in addition to transcriptional and serum profiling of COVID-19 patients, consistently revealed a unique and inappropriate inflammatory response. This response is defined by low levels of type I and III interferons juxtaposed to elevated chemokines and high expression of IL-6. We propose that reduced innate antiviral defenses coupled with exuberant inflammatory cytokine production are the defining and driving features of COVID-19.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug-Repurposing

            SUMMARY The novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 2.3 million people, killed over 160,000, and caused worldwide social and economic disruption 1,2 . There are currently no antiviral drugs with proven clinical efficacy, nor are there vaccines for its prevention, and these efforts are hampered by limited knowledge of the molecular details of SARS-CoV-2 infection. To address this, we cloned, tagged and expressed 26 of the 29 SARS-CoV-2 proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), identifying 332 high-confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 compounds (29 FDA-approved drugs, 12 drugs in clinical trials, and 28 preclinical compounds). Screening a subset of these in multiple viral assays identified two sets of pharmacological agents that displayed antiviral activity: inhibitors of mRNA translation and predicted regulators of the Sigma1 and Sigma2 receptors. Further studies of these host factor targeting agents, including their combination with drugs that directly target viral enzymes, could lead to a therapeutic regimen to treat COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomolecular condensates: organizers of cellular biochemistry

              In addition to membrane-bound organelles, eukaryotic cells feature various membraneless compartments, including the centrosome, the nucleolus and various granules. Many of these compartments form through liquid–liquid phase separation, and the principles, mechanisms and regulation of their assembly as well as their cellular functions are now beginning to emerge.
                Bookmark

                Author and article information

                Journal
                J Biol Chem
                J Biol Chem
                The Journal of Biological Chemistry
                THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
                0021-9258
                1083-351X
                4 February 2022
                4 February 2022
                : 101677
                Affiliations
                [1]Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
                Author notes
                []Corresponding author:
                Article
                S0021-9258(22)00117-X 101677
                10.1016/j.jbc.2022.101677
                8813722
                35131265
                274413c6-6820-4724-b72b-f8ae2156a340
                © 2022 The Authors

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 9 September 2021
                : 26 January 2022
                : 28 January 2022
                Categories
                JBC Reviews

                Biochemistry
                sars-cov-2,phase separation,biomolecular condensate,membraneless organelle,intrinsically disordered region,nucleocapsid protein,innate immunity,stress granule

                Comments

                Comment on this article