11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Collagen-based silver nanoparticles: Study on cell viability, skin permeation, and swelling inhibition.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Collagen is considered the most abundant protein in the animal kingdom, comprising 30% of the total amount of proteins and 6% of the human body by weight. Studies that examine the interaction between silver nanoparticles and proteins have been highlighted in the literature in order to understand the stability of the nanoparticle system, the effects observed in biological systems, and the appearance of new chemical pharmaceutical products. The objective of this study was to analyze the behavior of silver nanoparticles stabilized with collagen (AgNPcol) and to check the skin permeation capacity and action in paw edema induced by carrageenan. AgNPcol synthesis was carried out using solutions of reducing agent sodium borohydride (NaBH4), silver nitrate (AgNO3) and collagen. Characterization was done by using dynamic light scattering (DLS) and X-ray diffraction (XRD) and AFM. Cellular viability testing was performed by using flow cytometry in human melanoma cancer (MV3) and murine fibroblast (L929) cells. The skin permeation study was conducted using a Franz diffusion cell, and the efficiency of AgNPcol against the formation of paw edema in mice was evaluated. The hydrodynamic diameter and zeta potential of AgNPcol were 140.7±7.8nm and 20.1±0.7mV, respectively. AgNPcol failed to induce early apoptosis, late apoptosis, and necrosis in L929 cells; however, it exhibited enhanced toxicity in cancer cells (MV3) compared to normal cells (L929). AgNPcol demonstrated increased toxicological effects in cancer MV3 cells, promoting skin permeation, and preventing paw edema.

          Related collections

          Author and article information

          Journal
          Mater Sci Eng C Mater Biol Appl
          Materials science & engineering. C, Materials for biological applications
          Elsevier BV
          1873-0191
          0928-4931
          May 01 2017
          : 74
          Affiliations
          [1 ] Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí, Brazil; Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí, Brazil. Electronic address: vscfisio@ufpi.edu.br.
          [2 ] Physiotherapy Department, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí, Brazil; Morphology and Muscle Physiology Laboratory, LAMFIM, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí, Brazil.
          [3 ] Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí, Brazil.
          [4 ] Faculdade de Ciências Farmacêuticas, UNESP, Universidade Estadual Paulista, Campus de Araraquara, Departamento de Bioprocessos e Biotecnologia, 14800903 Araraquara, São Paulo, Brazil.
          [5 ] Institute of Physics of São Carlos, IFSC, University of São Paulo, USP, 13566590 São Carlos, SP, Brazil.
          [6 ] Nanomedicine and Nanotoxicology Group, Institute of Physics of São Carlos, IFSC, University of São Paulo, USP, 13566-590 São Carlos, SP, Brazil.
          [7 ] Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, USP, 14040901 Ribeirão Preto, SP, Brazil.
          [8 ] Research Center in Biodiversity and Biotechnology, Biotec, Campus Ministro Reis Velloso, Federal University of Piauí, UFPI, 64202020 Parnaíba, Piauí, Brazil; Área de Morfologia, Faculdade de Medicina, FM, Universidade de Brasília, UnB, Campus Universitário Darcy Ribeiro, Brasília, 70910900, Distrito Federal, Brazil.
          [9 ] Department of Chemistry, Campus Teresina, Federal University of Piauí, 64049-550 Teresina, Piauí, Brazil.
          Article
          S0928-4931(16)32510-3
          10.1016/j.msec.2016.12.025
          28254308
          27482be4-a8dd-49d2-b46f-69af436b2e95
          History

          Collagen,L929 fibroblast cell,MV3 cancer cell,Nanoparticle,Nanotoxicology,Silver

          Comments

          Comment on this article