17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aedes–Chikungunya Virus Interaction: Key Role of Vector Midguts Microbiota and Its Saliva in the Host Infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aedes mosquitoes are important vectors for emerging diseases caused by arboviruses, such as chikungunya (CHIKV). These viruses’ main transmitting species are Aedes aegypti and Ae. albopictus, which are present in tropical and temperate climatic areas all over the globe. Knowledge of vector characteristics is fundamentally important to the understanding of virus transmission. Only female mosquitoes are able to transmit CHIKV to the vertebrate host since they are hematophagous. In addition, mosquito microbiota is fundamentally important to virus infection in the mosquito. Microorganisms are able to modulate viral transmission in the mosquito, such as bacteria of the Wolbachia genus, which are capable of preventing viral infection, or protozoans of the Ascogregarina species, which are capable of facilitating virus transmission between mosquitoes and larvae. The competence of the mosquito is also important in the transmission of the virus to the vertebrate host, since their saliva has several substances with biological effects, such as immunomodulators and anticoagulants, which are able to modulate the host’s response to the virus, interfering in its pathogenicity and virulence. Understanding the Aedes vector-chikungunya interaction is fundamentally important since it can enable the search for new methods of combating the virus’ transmission.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus

          Background Since the major outbreak in 2007 in the Yap Island, Zika virus (ZIKV) causing dengue-like syndromes has affected multiple islands of the South Pacific region. In May 2015, the virus was detected in Brazil and then spread through South and Central America. In December 2015, ZIKV was detected in French Guiana and Martinique. The aim of the study was to evaluate the vector competence of the mosquito spp. Aedes aegypti and Aedes albopictus from the Caribbean (Martinique, Guadeloupe), North America (southern United States), South America (Brazil, French Guiana) for the currently circulating Asian genotype of ZIKV isolated from a patient in April 2014 in New Caledonia. Methodology/Principal Findings Mosquitoes were orally exposed to an Asian genotype of ZIKV (NC-2014-5132). Upon exposure, engorged mosquitoes were maintained at 28°±1°C, a 16h:8h light:dark cycle and 80% humidity. 25–30 mosquitoes were processed at 4, 7 and 14 days post-infection (dpi). Mosquito bodies (thorax and abdomen), heads and saliva were analyzed to measure infection, dissemination and transmission, respectively. High infection but lower disseminated infection and transmission rates were observed for both Ae. aegypti and Ae. albopictus. Ae. aegypti populations from Guadeloupe and French Guiana exhibited a higher dissemination of ZIKV than the other Ae. aegypti populations examined. Transmission of ZIKV was observed in both mosquito species at 14 dpi but at a low level. Conclusions/Significance This study suggests that although susceptible to infection, Ae. aegypti and Ae. albopictus were unexpectedly low competent vectors for ZIKV. This may suggest that other factors such as the large naïve population for ZIKV and the high densities of human-biting mosquitoes contribute to the rapid spread of ZIKV during the current outbreak.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection

            Background Aedes aegypti and Aedes albopictus are potential vectors of chikungunya virus (CHIKV). The recent CHIKV outbreaks were caused by a new variant characterized by a mutation in the E1 glycoprotein gene (E1-226V) which has favored a better transmissibility by Ae. albopictus. As Ae. albopictus tends to replace Ae. aegypti in many regions, one question remained: is Ae. albopictus as efficient as Ae. aegypti to transmit the variant E1-226V of CHIKV? Methodology and Findings We infected orally both species with the variant E1-226V and estimated the infection, the viral dissemination, and the transmission rate by real time RT-PCR. Additionally, we used an in vitro assay to determine the amount of virus delivered by mosquitoes in their saliva. We found that Ae. aegypti as well as Ae. albopictus ensured a high replication of the virus which underwent an efficient dissemination as detectable in the salivary glands at day 2 post-infection (pi). Infectious CHIKV particles were delivered by salivary glands from day 2 with a maximum at day 6 pi for Ae. albopictus (103.3 PFU) and day 7 pi for Ae. aegypti (102.5 PFU). Conclusions Ae. albopictus is slightly more efficient than Ae. aegypti to transmit the variant E1-226V of CHIKV. These results will help to design an efficient vector control to limit transmission as soon as the first human cases are diagnosed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen.

              Re-emergence of chikungunya virus, a mosquito-transmitted pathogen, is of serious public health concern. In the past 15 years, after decades of infrequent, sporadic outbreaks, the virus has caused major epidemic outbreaks in Africa, Asia, the Indian Ocean, and more recently the Caribbean and the Americas. Chikungunya virus is mainly transmitted by Aedes aegypti mosquitoes in tropical and subtropical regions, but the potential exists for further spread because of genetic adaptation of the virus to Aedes albopictus, a species that thrives in temperate regions. Chikungunya virus represents a substantial health burden to affected populations, with symptoms that include severe joint and muscle pain, rashes, and fever, as well as prolonged periods of disability in some patients. The inflammatory response coincides with raised levels of immune mediators and infiltration of immune cells into infected joints and surrounding tissues. Animal models have provided insights into disease pathology and immune responses. Although host innate and adaptive responses have a role in viral clearance and protection, they can also contribute to virus-induced immune pathology. Understanding the mechanisms of host immune responses is essential for the development of treatments and vaccines. Inhibitory compounds targeting key inflammatory pathways, as well as attenuated virus vaccines, have shown some success in animal models, including an attenuated vaccine strain based on an isolate from La Reunion incorporating an internal ribosome entry sequence that prevents the virus from infecting mosquitoes and a vaccine based on virus-like particles expressing envelope proteins. However, immune correlates of protection, as well as the safety of prophylactic and therapeutic candidates, are important to consider for their application in chikungunya infections. In this Review, we provide an update on chikungunya virus with regard to its epidemiology, molecular virology, virus-host interactions, immunological responses, animal models, and potential antiviral therapies and vaccines.
                Bookmark

                Author and article information

                Contributors
                URI : http://loop.frontiersin.org/people/479732/overview
                URI : http://loop.frontiersin.org/people/696723/overview
                URI : http://loop.frontiersin.org/people/554890/overview
                URI : http://loop.frontiersin.org/people/679068/overview
                URI : http://loop.frontiersin.org/people/694326/overview
                URI : http://loop.frontiersin.org/people/25193/overview
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 April 2019
                2019
                : 10
                : 492
                Affiliations
                [1] 1Laboratory of Inflammation and Pain, Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo , Ribeirão Preto, Brazil
                [2] 2Graduate Program in Neuroscience and Cellular Biology, Biology Science Institute, Federal University of Pará , Belém, Brazil
                [3] 3Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul , Porto Alegre, Brazil
                [4] 4Laboratory of Acarology, Tecnovates, University of Taquari Valley – Univates Lajeado , Lajeado, Brazil
                [5] 5Graduate Program in Pharmaceutical Science, Health Science Institute, Federal University of Pará , Belém, Brazil
                [6] 6School of Pharmacy, Health Science Institute, Federal University of Pará , Belém, Brazil
                [7] 7Laboratory of Cellular and Molecular Immunology, Federal University of Health Sciences of Porto Alegre , Porto Alegre, Brazil
                Author notes

                Edited by: Tonya Michelle Colpitts, Boston University, United States

                Reviewed by: Stefanie Christine Becker, University of Veterinary Medicine Hannover, Germany; Grant Leslie Hughes, Liverpool School of Tropical Medicine, United Kingdom; Ian Patterson, Liverpool School of Tropical Medicine, United Kingdom, in collaboration with reviewer GH

                *Correspondence: Marta Chagas Monteiro, martachagas2@ 123456yahoo.com.br

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2019.00492
                6467098
                31024463
                27495326-118e-4813-9dd5-61441f6101bc
                Copyright © 2019 Monteiro, Navegantes-Lima, de Lemos, da Silva, de Souza Gomes, Reis, Rodrigues Junior, da Silva, Romão and Monteiro.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 September 2018
                : 26 February 2019
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 125, Pages: 13, Words: 0
                Funding
                Funded by: Conselho Nacional de Desenvolvimento Científico e Tecnológico 10.13039/501100003593
                Funded by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior 10.13039/501100002322
                Categories
                Microbiology
                Review

                Microbiology & Virology
                aedes aegypti,aedes albopictus,arthropod-borne virus,chikv,virus maintenance,microorganisms

                Comments

                Comment on this article