98
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The population dynamics of Plasmodium sporogony within mosquitoes consists of an early phase where parasite abundance decreases during the transition from gametocyte to oocyst, an intermediate phase where parasite abundance remains static as oocysts, and a later phase where parasite abundance increases during the release of progeny sporozoites from oocysts. Sporogonic development is complete when sporozoites invade the mosquito salivary glands. The dynamics and efficiency of this developmental sequence were determined in laboratory strains of Anopheles dirus, Anopheles minimus and Anopheles sawadwongporni mosquitoes for Plasmodium vivax parasites circulating naturally in western Thailand.

          Methods

          Mosquitoes were fed blood from 20 symptomatic Thai adults via membrane feeders. Absolute densities were estimated for macrogametocytes, round stages (= female gametes/zygotes), ookinetes, oocysts, haemolymph sporozoites and salivary gland sporozoites. From these census data, five aspects of population dynamics were analysed; 1) changes in life-stage prevalence during early sporogony, 2) kinetics of life-stage formation, 3) efficiency of life-stage transitions, 4) density relationships between successive life-stages, and 5) parasite aggregation patterns.

          Results

          There was no difference among the three mosquito species tested in total losses incurred by P. vivax populations during early sporogony. Averaged across all infections, parasite populations incurred a 68-fold loss in abundance, with losses of ca. 19-fold, 2-fold and 2-fold at the first (= gametogenesis/fertilization), second (= round stage transformation), and third (= ookinete migration) life-stage transitions, respectively. However, total losses varied widely among infections, ranging from 6-fold to over 2,000-fold loss. Losses during gametogenesis/fertilization accounted for most of this variability, indicating that gametocytes originating from some volunteers were more fertile than those from other volunteers. Although reasons for such variability were not determined, gametocyte fertility was not correlated with blood haematocrit, asexual parasitaemia, gametocyte density or gametocyte sex ratio. Round stages and ookinetes were present in mosquito midguts for up to 48 hours and development was asynchronous. Parasite losses during fertilization and round stage differentiation were more influenced by factors intrinsic to the parasite and/or factors in the blood, whereas ookinete losses were more strongly influenced by mosquito factors. Oocysts released sporozoites on days 12 to 14, but even by day 22 many oocysts were still present on the midgut. The per capita production was estimated to be approximately 500 sporozoites per oocyst and approximately 75% of the sporozoites released into the haemocoel successfully invaded the salivary glands.

          Conclusion

          The major developmental bottleneck in early sporogony occurred during the transition from macrogametocyte to round stage. Sporozoite invasion into the salivary glands was very efficient. Information on the natural population dynamics of sporogony within malaria-endemic areas may benefit intervention strategies that target early sporogony ( e.g., transmission blocking vaccines, transgenic mosquitoes).

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Malaria parasite development in mosquitoes.

          J Beier (1998)
          Mosquitoes of the genus Anopheles transmit malaria parasites to humans. Anopheles mosquito species vary in their vector potential because of environmental conditions and factors affecting their abundance, blood-feeding behavior, survival, and ability to support malaria parasite development. In the complex life cycle of the parasite in female mosquitoes, a process termed sporogony, mosquitoes acquire gametocyte-stage parasites from blood-feeding on an infected host. The parasites carry out fertilization in the midgut, transform to ookinetes, then oocysts, which produce sporozoites. Sporozoites invade the salivary glands and are transmitted when the mosquito feeds on another host. Most individual mosquitoes that ingest gametocytes do not support development to the sporozoite stage. Bottle-necks occur at every stage of the cycle in the mosquito. Powerful new techniques and approaches exist for evaluating malaria parasite development and for identifying mechanisms regulating malaria parasite-vector interactions. This review focuses on those interactions that are important for the development of new approaches for evaluating and blocking transmission in nature.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Infectivity to mosquitoes of Plasmodium falciparum as related to gametocyte density and duration of infection.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spreading the seeds of million-murdering death: metamorphoses of malaria in the mosquito.

              Plasmodium spp. undergo a complex obligate developmental cycle within their invertebrate vectors that enables transmission between vertebrate hosts. This developmental cycle involves sexual reproduction and then asexual multiplication, separated by phases of invasion and colonization of distinct vector tissues. As with other stages in the Plasmodium life cycle, there is exquisite adaptation of the malaria parasite to its changing environment as it transforms within the blood of its vertebrate host, through the different tissues of its mosquito vector and onwards to infect a new vertebrate host. Despite the intricacies inherent in these successive transformations, malaria parasites remain staggeringly successful at disseminating through their vertebrate host populations.
                Bookmark

                Author and article information

                Journal
                Malar J
                Malaria Journal
                BioMed Central (London )
                1475-2875
                2006
                3 August 2006
                : 5
                : 68
                Affiliations
                [1 ]Department of Entomology, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA
                [2 ]Department of Entomology, USAMC-AFRIMS, Bangkok, Thailand
                [3 ]Department of Biology, University of North Dakota, Grand Forks, ND 58202-9019, USA
                Article
                1475-2875-5-68
                10.1186/1475-2875-5-68
                1557861
                16887043
                274f151c-7c9f-4989-b952-03f23e8fc01b
                Copyright © 2006 Zollner et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 October 2005
                : 3 August 2006
                Categories
                Research

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article