Blog
About

57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Towards evidence-based, GIS-driven national spatial health information infrastructure and surveillance services in the United Kingdom

      , 1

      International Journal of Health Geographics

      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The term "Geographic Information Systems" (GIS) has been added to MeSH in 2003, a step reflecting the importance and growing use of GIS in health and healthcare research and practices. GIS have much more to offer than the obvious digital cartography (map) functions. From a community health perspective, GIS could potentially act as powerful evidence-based practice tools for early problem detection and solving. When properly used, GIS can: inform and educate (professionals and the public); empower decision-making at all levels; help in planning and tweaking clinically and cost-effective actions, in predicting outcomes before making any financial commitments and ascribing priorities in a climate of finite resources; change practices; and continually monitor and analyse changes, as well as sentinel events. Yet despite all these potentials for GIS, they remain under-utilised in the UK National Health Service (NHS). This paper has the following objectives: (1) to illustrate with practical, real-world scenarios and examples from the literature the different GIS methods and uses to improve community health and healthcare practices, e.g., for improving hospital bed availability, in community health and bioterrorism surveillance services, and in the latest SARS outbreak; (2) to discuss challenges and problems currently hindering the wide-scale adoption of GIS across the NHS; and (3) to identify the most important requirements and ingredients for addressing these challenges, and realising GIS potential within the NHS, guided by related initiatives worldwide. The ultimate goal is to illuminate the road towards implementing a comprehensive national, multi-agency spatio-temporal health information infrastructure functioning proactively in real time. The concepts and principles presented in this paper can be also applied in other countries, and on regional (e.g., European Union) and global levels.

          Related collections

          Most cited references 118

          • Record: found
          • Abstract: found
          • Article: not found

          Geographically masking health data to preserve confidentiality.

          The conventional approach to preserving the confidentiality of health records aggregates all records within a geographical area that has a population large enough to ensure prevention of disclosure. Though this approach normally protects the privacy of individuals, the use of such aggregated data limits the types of research one can conduct and makes it impossible to address many important health problems. In this paper we discuss the design and implementation of geographical masks that not only preserve the security of individual health records, but also support the investigation of questions that can be answered only with some knowledge about the location of health events. We describe several alternative methods of masking individual-level data, evaluate their performance, and discuss both the degree to which we can analyse masked data validly as well as the relative security of each approach, should anyone attempt to recover the identity of an individual from the masked data. We conclude that the geographical masks we describe, when appropriately used, protect the confidentiality of health records while permitting many important geographically-based analyses, but that further research is needed to determine how the power of tests for clustering or the strength of other associative relationships are adversely affected by the characteristics of different masks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Technical Description of RODS: A Real-time Public Health Surveillance System

            This report describes the design and implementation of the Real-time Outbreak and Disease Surveillance (RODS) system, a computer-based public health surveillance system for early detection of disease outbreaks. Hospitals send RODS data from clinical encounters over virtual private networks and leased lines using the Health Level 7 (HL7) message protocol. The data are sent in real time. RODS automatically classifies the registration chief complaint from the visit into one of seven syndrome categories using Bayesian classifiers. It stores the data in a relational database, aggregates the data for analysis using data warehousing techniques, applies univariate and multivariate statistical detection algorithms to the data, and alerts users of when the algorithms identify anomalous patterns in the syndrome counts. RODS also has a Web-based user interface that supports temporal and spatial analyses. RODS processes sales of over-the-counter health care products in a similar manner but receives such data in batch mode on a daily basis. RODS was used during the 2002 Winter Olympics and currently operates in two states—Pennsylvania and Utah. It has been and continues to be a resource for implementing, evaluating, and applying new methods of public health surveillance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Positional error in automated geocoding of residential addresses

              Background Public health applications using geographic information system (GIS) technology are steadily increasing. Many of these rely on the ability to locate where people live with respect to areas of exposure from environmental contaminants. Automated geocoding is a method used to assign geographic coordinates to an individual based on their street address. This method often relies on street centerline files as a geographic reference. Such a process introduces positional error in the geocoded point. Our study evaluated the positional error caused during automated geocoding of residential addresses and how this error varies between population densities. We also evaluated an alternative method of geocoding using residential property parcel data. Results Positional error was determined for 3,000 residential addresses using the distance between each geocoded point and its true location as determined with aerial imagery. Error was found to increase as population density decreased. In rural areas of an upstate New York study area, 95 percent of the addresses geocoded to within 2,872 m of their true location. Suburban areas revealed less error where 95 percent of the addresses geocoded to within 421 m. Urban areas demonstrated the least error where 95 percent of the addresses geocoded to within 152 m of their true location. As an alternative to using street centerline files for geocoding, we used residential property parcel points to locate the addresses. In the rural areas, 95 percent of the parcel points were within 195 m of the true location. In suburban areas, this distance was 39 m while in urban areas 95 percent of the parcel points were within 21 m of the true location. Conclusion Researchers need to determine if the level of error caused by a chosen method of geocoding may affect the results of their project. As an alternative method, property data can be used for geocoding addresses if the error caused by traditional methods is found to be unacceptable.
                Bookmark

                Author and article information

                Journal
                Int J Health Geogr
                International Journal of Health Geographics
                BioMed Central (London )
                1476-072X
                2004
                28 January 2004
                : 3
                : 1
                Affiliations
                [1 ]School for Health, University of Bath, Claverton Down, Bath BA2 7AY, UK
                Article
                1476-072X-3-1
                10.1186/1476-072X-3-1
                343292
                14748927
                Copyright © 2004 Boulos; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
                Categories
                Review

                Public health

                Comments

                Comment on this article