11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of posterior corneal astigmatism on postoperative refractive astigmatism in pseudophakic eyes after cataract surgery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          To examine the influence of posterior corneal astigmatism on postoperative refractive astigmatism in pseudophakic eyes after cataract surgery.

          Methods

          The study enrolled 64 pseudophakic eyes of 50 patients (71.8 ± 9.9 years old, mean ± standard deviation) who had undergone phacoemulsification with non-toric IOL implantation. Refractive astigmatism was measured using an auto ref-keratometer with a 0.01- diopter (D) scale. Two types of corneal astigmatism were calculated using anterior segment optical coherence tomography; keratometric and total corneal astigmatism. Keratometric astigmatism was obtained based on anterior corneal curvature alone and total corneal astigmatism was calculated using both anterior and posterior corneal curvatures. The difference between refractive and corneal astigmatism was computed as the vector difference using 1) refractive and keratometric astigmatism and 2) refractive and total corneal astigmatism.

          Results

          The mean refractive, keratometric, and total corneal astigmatism was 0.92 ± 0.48 D, 0.87 ± 0.44 D, and 0.94 ± 0.46 D, respectively. The difference between refractive and keratometric astigmatism (0.70 ± 0.40 D, mean vector of 0.30 D axis 164°) was significantly larger than the difference between refractive and total corneal astigmatism (0.63 ± 0.38 D, mean vector of 0.12 D axis 137°) ( P = .019).

          Conclusions

          The difference between refractive and total corneal astigmatism, calculated using both anterior and posterior corneal curvatures, was significantly smaller than the difference between refractive and keratometric astigmatism using anterior corneal astigmatism alone, implying that the latter overestimates the true postoperative refractive astigmatism and can cause cylindrical inaccuracy after cataract surgery.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: not found

          Contribution of posterior corneal astigmatism to total corneal astigmatism.

          To determine the contribution of posterior corneal astigmatism to total corneal astigmatism and the error in estimating total corneal astigmatism from anterior corneal measurements only using a dual-Scheimpflug analyzer. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA. Case series. Total corneal astigmatism was calculated using ray tracing, corneal astigmatism from simulated keratometry, anterior corneal astigmatism, and posterior corneal astigmatism, and the changes with age were analyzed. Vector analysis was used to assess the error produced by estimating total corneal astigmatism from anterior corneal measurements only. The study analyzed 715 corneas of 435 consecutive patients. The mean magnitude of posterior corneal astigmatism was -0.30 diopter (D). The steep corneal meridian was aligned vertically (60 to 120 degrees) in 51.9% of eyes for the anterior surface and in 86.6% for the posterior surface. With increasing age, the steep anterior corneal meridian tended to change from vertical to horizontal, while the steep posterior corneal meridian did not change. The magnitudes of anterior and posterior corneal astigmatism were correlated when the steeper anterior meridian was aligned vertically but not when it was aligned horizontally. Anterior corneal measurements underestimated total corneal astigmatism by 0.22 @ 180 and exceeded 0.50 D in 5% of eyes. Ignoring posterior corneal astigmatism may yield incorrect estimation of total corneal astigmatism. Selecting toric intraocular lenses based on anterior corneal measurements could lead to overcorrection in eyes that have with-the-rule astigmatism and undercorrection in eyes that have against-the-rule astigmatism. The authors received research support from Ziemer Group. In addition, Dr. Koch has a financial interest with Alcon Laboratories, Inc., Abbott Medical Optics, Inc., Calhoun Vision, Inc., NuLens, and Optimedica Corp. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correcting astigmatism with toric intraocular lenses: effect of posterior corneal astigmatism.

            To evaluate the impact of posterior corneal astigmatism on outcomes with toric intraocular lenses (IOLs). Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, USA. Case series. Corneal astigmatism was measured using 5 devices before and 3 weeks after cataract surgery. Toric IOL alignment was recorded at surgery and at the slitlamp 3 weeks postoperatively. The actual corneal astigmatism was calculated based on refractive astigmatism 3 weeks postoperatively and the effective toric power calculated with the Holladay 2 formula. The prediction error was calculated as the difference between the astigmatism measured by each device and the actual corneal astigmatism. Vector analysis was used in all calculations. With the IOLMaster, Lenstar, Atlas, manual keratometer, and Galilei (combined Placido-dual Scheimpflug analyzer), the mean prediction errors (D) were, respectively, 0.59 @ 89.7, 0.48 @ 91.2, 0.51 @ 78.7, 0.62 @ 97.2, and 0.57 @ 93.9 for with-the-rule (WTR) astigmatism (60 to 120 degrees), and 0.17 @ 86.2, 0.23 @ 77.7, 0.23 @ 91.4, 0.41 @ 58.4, and 0.12 @ 7.3 for against-the-rule (ATR) astigmatism (0 to 30 degrees and 150 to 180 degrees). In the WTR eyes, there were significant WTR prediction errors (0.5 to 0.6 diopters [D]) by all devices. In ATR eyes, WTR prediction errors were 0.2 to 0.3 D by all devices except the Placido-dual Scheimpflug analyzer (all P<.05 with Bonferroni correction). Corneal astigmatism was overestimated in WTR by all devices and underestimated in ATR by all except the Placido-dual Scheimpflug analyzer. A new toric IOL nomogram is proposed. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of astigmatism on visual acuity in eyes with a diffractive multifocal intraocular lens.

              To examine the effect of astigmatism on visual acuity at various distances in eyes with a diffractive multifocal intraocular lens (IOL). Hayashi Eye Hospital, Fukuoka, Japan. In this study, eyes had implantation of a diffractive multifocal IOL with a +3.00 diopter (D) addition (add) (AcrySof ReSTOR SN6AD1), a diffractive multifocal IOL with a +4.00 D add (AcrySof ReSTOR SN6AD3), or a monofocal IOL (AcrySof SN60WF). Astigmatism was simulated by adding cylindrical lenses of various diopters (0.00, 0.50, 1.00, 1.50, 2.00), after which distance-corrected acuity was measured at various distances. At most distances, the mean visual acuity in the multifocal IOL groups decreased in proportion to the added astigmatism. With astigmatism of 0.00 D and 0.50 D, distance-corrected near visual acuity (DCNVA) in the +4.00 D group and distance-corrected intermediate visual acuity (DCIVA) and DCNVA in the +3.00 D group were significantly better than in the monofocal group; the corrected distance visual acuity (CDVA) was similar. The DCNVA with astigmatism of 1.00 D was better in 2 multifocal groups; however, with astigmatism of 1.50 D and 2.00 D, the CDVA and DCIVA at 0.5m in the multifocal groups were significantly worse than in the monofocal group, although the DCNVA was similar. With astigmatism of 1.00 D or greater, the mean CDVA and DCNVA in the multifocal groups reached useful levels (20/40). The presence of astigmatism in eyes with a diffractive multifocal IOL compromised all distance visual acuities, suggesting the need to correct astigmatism of greater than 1.00 D. No author has a financial or proprietary interest in any material or method mentioned. Copyright 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                +81-29-853-3220 , konkonhotaru@yahoo.co.jp
                thiraoka@md.tsukuba.ac.jp
                yu_ueno71@yahoo.co.jp
                hideo.itagaki.bz@hitachi.com
                ogm@live.jp
                oshika@eye.ac
                Journal
                BMC Ophthalmol
                BMC Ophthalmol
                BMC Ophthalmology
                BioMed Central (London )
                1471-2415
                1 December 2016
                1 December 2016
                2016
                : 16
                Affiliations
                [1 ]Department of Ophthalmology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576 Japan
                [2 ]Hitachi General Hospital, 2-1-1 Jonancho, Hitachi, Ibaraki 317-0077 Japan
                [3 ]Seinan Medical Center hospital, 2190 Sakaimachi, Sashimagun, Ibaraki 306-0433 Japan
                [4 ]Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576 Japan
                Article
                391
                10.1186/s12886-016-0391-1
                5134072
                27905889
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Ophthalmology & Optometry

                posterior astigmatism, cataract surgery, toric intraocular lens

                Comments

                Comment on this article