26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diabetes Adversely Affects Macrophages During Atherosclerotic Plaque Regression in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          Patients with diabetes have increased cardiovascular risk. Atherosclerosis in these patients is often associated with increased plaque macrophages and dyslipidemia. We hypothesized that diabetic atherosclerosis involves processes that impair favorable effects of lipid reduction on plaque macrophages.

          RESEARCH DESIGN AND METHODS

          Reversa mice are LDL receptor–deficient mice that develop atherosclerosis. Their elevated plasma LDL levels are lowered after conditional knockout of the gene encoding microsomal triglyceride transfer protein. We examined the morphologic and molecular changes in atherosclerotic plaques in control and streptozotocin-induced diabetic Reversa mice after LDL lowering. Bone marrow–derived macrophages were also used to study changes mediated by hyperglycemia.

          RESULTS

          Reversa mice were fed a western diet for 16 weeks to develop plaques (baseline). Four weeks after lipid normalization, control (nondiabetic) mice had reduced plasma cholesterol (−77%), plaque cholesterol (−53%), and plaque cells positive for macrophage marker CD68+ (−73%), but increased plaque collagen (+116%) compared with baseline mice. Diabetic mice had similarly reduced plasma cholesterol, but collagen content increased by only 34% compared with baseline; compared with control mice, there were lower reductions in plaque cholesterol (−30%) and CD68+ cells (−41%). Diabetic (vs. control) plaque CD68+ cells also exhibited more oxidant stress and inflammatory gene expression and less polarization toward the anti-inflammatory M2 macrophage state. Many of the findings in vivo were recapitulated by hyperglycemia in mouse bone marrow–derived macrophages.

          CONCLUSIONS

          Diabetes hindered plaque regression in atherosclerotic mice (based on CD68+ plaque content) and favorable changes in plaque macrophage characteristics after the reduction of elevated plasma LDL.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.

          Complex interplay between T helper (Th) cells and macrophages contributes to the formation and progression of atherosclerotic plaques. While Th1 cytokines promote inflammatory activation of lesion macrophages, Th2 cytokines attenuate macrophage-mediated inflammation and enhance their repair functions. In spite of its biologic importance, the biochemical and molecular basis of how Th2 cytokines promote maturation of anti-inflammatory macrophages is not understood. We show here that in response to interleukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT6) and PPARgamma-coactivator-1beta (PGC-1beta) induce macrophage programs for fatty acid oxidation and mitochondrial biogenesis. Transgenic expression of PGC-1beta primes macrophages for alternative activation and strongly inhibits proinflammatory cytokine production, whereas inhibition of oxidative metabolism or RNAi-mediated knockdown of PGC-1beta attenuates this immune response. These data elucidate a molecular pathway that directly links mitochondrial oxidative metabolism to the anti-inflammatory program of macrophage activation, suggesting a potential role for metabolic therapies in treating atherogenic inflammation.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Atherosclerosis is an inflammatory disease

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of oxidized low density lipoprotein in atherogenesis.

              Evidence to support an important role of oxidative modification in mediating the atherogenicity of LDL continues to grow. New hypotheses suggest mechanisms by which Ox-LDL or products of Ox-LDL can affect many components of the atherogenic process, including vasomotor properties and thrombosis, as well as lesion initiation and progression itself. These ideas suggest new approaches, that in combination with lowering of plasma cholesterol, could lead to the prevention of atherosclerosis and its complications.
                Bookmark

                Author and article information

                Journal
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                June 2011
                21 May 2011
                : 60
                : 6
                : 1759-1769
                Affiliations
                [1] 1Department of Medicine and the Leon H. Charney Division of Cardiology/Marc and Ruti Bell Program in Vascular Biology, New York University School of Medicine, New York, New York
                [2] 2Department of Medicine, Division of Preventive Medicine, Columbia University College of Physicians and Surgeons, New York, New York
                [3] 3Department of Cardiovascular Medicine, University of Oxford, Oxford, U.K.
                Author notes
                Corresponding author: Edward A. Fisher, edward.fisher@ 123456nyumc.org .
                Article
                0778
                10.2337/db10-0778
                3114401
                21562077
                275c3dc2-d225-4c46-bb80-6841af51bfce
                © 2011 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 02 June 2010
                : 07 March 2011
                Categories
                Complications

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article