6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-Inflammatory Effects of Vitisinol A and Four Other Oligostilbenes from Ampelopsis brevipedunculata var. Hancei

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this study, the cytotoxicities and anti-inflammatory activities of five resveratrol derivatives—vitisinol A, (+)-ε-viniferin, (+)-vitisin A, (−)-vitisin B, and (+)-hopeaphenol—isolated from Ampelopsis brevipedunculata var. hancei were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lipopolysaccharide (LPS)-stimulated RAW264.7 cells, respectively. The result from MTT assay analysis indicated that vitisinol A has lower cytotoxicity than the other four well-known oligostilbenes. In the presence of vitisinol A (5 μM), the significant reduction of inflammation product (nitric oxide, NO) in LPS-induced RAW264.7 cells was measured using Griess reaction assay. In addition, the under-expressed inflammation factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in LPS-induced RAW264.7 cells monitored by Western blotting simultaneously suggested that vitisinol A has higher anti-inflammatory effect compared with other resveratrol derivatives. Finally, the anti-inflammatory effect of vitisinol A was further demonstrated on 12- O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema in mice. As a preliminary functional evaluation of natural product, the anti-inflammatory effect of vitisinol A is the first to be examined and reported by this study.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs.

          J R Vane (1971)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase.

            Constitutive cyclooxygenase (COX-1; prostaglandin-endoperoxide synthase, EC 1.14.99.1) is present in cells under physiological conditions, whereas COX-2 is induced by some cytokines, mitogens, and endotoxin presumably in pathological conditions, such as inflammation. Therefore, we have assessed the relative inhibitory effects of some nonsteroidal antiinflammatory drugs on the activities of COX-1 (in bovine aortic endothelial cells) and COX-2 (in endotoxin-activated J774.2 macrophages) in intact cells, broken cells, and purified enzyme preparations (COX-1 in sheep seminal vesicles; COX-2 in sheep placenta). Similar potencies of aspirin, indomethacin, and ibuprofen against the broken cell and purified enzyme preparations indicated no influence of species. Aspirin, indomethacin, and ibuprofen were more potent inhibitors of COX-1 than COX-2 in all models used. The relative potencies of aspirin and indomethacin varied only slightly between models, although the IC50 values were different. Ibuprofen was more potent as an inhibitor of COX-2 in intact cells than in either broken cells or purified enzymes. Sodium salicylate was a weak inhibitor of both COX isoforms in intact cells and was inactive against COX in either broken cells or purified enzyme preparations. Diclofenac, BW 755C, acetaminophen, and naproxen were approximately equipotent inhibitors of COX-1 and COX-2 in intact cells. BF 389, an experimental drug currently being tested in humans, was the most potent and most selective inhibitor of COX-2 in intact cells. Thus, there are clear pharmacological differences between the two enzymes. The use of such models of COX-1 and COX-2 activity will lead to the identification of selective inhibitors of COX-2 with presumably less side effects than present therapies. Some inhibitors had higher activity in intact cells than against purified enzymes, suggesting that pure enzyme preparations may not be predictive of therapeutic action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent developments in anti-inflammatory natural products.

              Many of the inflammatory diseases are becoming common in aging society throughout the world. The clinically used anti-inflammatory drugs suffer from the disadvantage of side effects and high cost of treatment (in case of biologics). Alternative to these drugs are traditional medicines and natural products, which offer a great hope in the identification of bioactive lead compounds and their development into drugs for treating inflammatory diseases. Since ancient times traditional medicines and phytopharmaceuticals are being used for the treatment of inflammatory and other disorders. The present review article describes anti-inflammatory natural products derived from plants and marine sources reported during last decade. The compounds described belong to different chemical classes such as alkaloids, steroids, terpenoids, polyphenolics, phenylpropanoids, fatty acids and lipids, and various miscellaneous compounds. The attempt is also being made to enumerate the possible leads, e.g. curcumin, resveratrol, baicalein, boswellic acid, betulinic acid, ursolic acid, and oleanolic acid, for further development with the help of structure-activity relationship (SAR) studies and their current status. In addition SAR studies carried out on the anti-inflammatory activity of flavonoid compounds and clinical studies performed on anti-inflammatory natural products are also discussed.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                17 July 2017
                July 2017
                : 22
                : 7
                Affiliations
                [1 ]Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 900, Taiwan; changchii@ 123456mail.npust.edu.tw (C.-I.C.); omg740805@ 123456gmail.com (W.-C.C.) yhdscndsl@ 123456gmail.com (K.-X.H.)
                [2 ]Research Center for Tropic Agriculture, National Pingtung University of Science and Technology, Pingtung 900, Taiwan
                [3 ]Research Center for Austronesian Medicine and Agriculture, National Pingtung University of Science and Technology, Pingtung 900, Taiwan
                Author notes
                [* ]Correspondence: jlhsu@ 123456mail.npust.edu.tw ; Tel.: +886-8-770-3202 (ext. 5197)
                Article
                molecules-22-01195
                10.3390/molecules22071195
                6152071
                28714918
                27788832-7796-439b-a6fc-6045a5fbbea2
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                Categories
                Communication

                ampelopsis brevipedunculata var. hancei,anti-inflammatory effect,oligostilbenes,vitisinol a

                Comments

                Comment on this article