43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SARS-Coronavirus Replication/Transcription Complexes Are Membrane-Protected and Need a Host Factor for Activity In Vitro

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          SARS-coronavirus (SARS-CoV) replication and transcription are mediated by a replication/transcription complex (RTC) of which virus-encoded, non-structural proteins (nsps) are the primary constituents. The 16 SARS-CoV nsps are produced by autoprocessing of two large precursor polyproteins. The RTC is believed to be associated with characteristic virus-induced double-membrane structures in the cytoplasm of SARS-CoV-infected cells. To investigate the link between these structures and viral RNA synthesis, and to dissect RTC organization and function, we isolated active RTCs from infected cells and used them to develop the first robust assay for their in vitro activity. The synthesis of genomic RNA and all eight subgenomic mRNAs was faithfully reproduced by the RTC in this in vitro system. Mainly positive-strand RNAs were synthesized and protein synthesis was not required for RTC activity in vitro. All RTC activity, enzymatic and putative membrane-spanning nsps, and viral RNA cosedimented with heavy membrane structures. Furthermore, the pelleted RTC required the addition of a cytoplasmic host factor for reconstitution of its in vitro activity. Newly synthesized subgenomic RNA appeared to be released, while genomic RNA remained predominantly associated with the RTC-containing fraction. RTC activity was destroyed by detergent treatment, suggesting an important role for membranes. The RTC appeared to be protected by membranes, as newly synthesized viral RNA and several replicase/transcriptase subunits were protease- and nuclease-resistant and became susceptible to degradation only upon addition of a non-ionic detergent. Our data establish a vital functional dependence of SARS-CoV RNA synthesis on virus-induced membrane structures.

          Author Summary

          The SARS-coronavirus (SARS-CoV), which causes the life-threatening severe acute respiratory syndrome, replicates in the cytoplasm of infected host cells. A critical early step in the SARS-CoV life cycle is the formation of a replication/transcription complex (RTC) that drives viral genome replication and subgenomic mRNA synthesis. Virus-encoded enzymes form the core of this RTC, which is believed to be associated with characteristic virus-induced membrane structures derived from modified host cell membranes. To investigate the connection between these membrane structures and SARS-CoV RNA synthesis, and to characterize RTC composition and function, we isolated these complexes and developed the first in vitro assay to study their activity. SARS-CoV genomic RNA and all eight subgenomic mRNAs were synthesized in this in vitro reaction. By centrifugation, RTC activity could be isolated from the cytoplasm, together with membrane structures, viral enzymes, and RNA. The activity of these isolated RTCs was dependent on a cytoplasmic host factor. RTC activity was destroyed by detergent treatment, suggesting a critical role for membranes that appeared to protect the complex against protease and nuclease digestion. Our data establish a functional connection between viral RNA synthesis and intracellular membranes and show that host factors play a crucial role in SARS-CoV RNA synthesis.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found

          Mechanisms and enzymes involved in SARS coronavirus genome expression.

          A novel coronavirus is the causative agent of the current epidemic of severe acute respiratory syndrome (SARS). Coronaviruses are exceptionally large RNA viruses and employ complex regulatory mechanisms to express their genomes. Here, we determined the sequence of SARS coronavirus (SARS-CoV), isolate Frankfurt 1, and characterized key RNA elements and protein functions involved in viral genome expression. Important regulatory mechanisms, such as the (discontinuous) synthesis of eight subgenomic mRNAs, ribosomal frameshifting and post-translational proteolytic processing, were addressed. Activities of three SARS coronavirus enzymes, the helicase and two cysteine proteinases, which are known to be critically involved in replication, transcription and/or post-translational polyprotein processing, were characterized. The availability of recombinant forms of key replicative enzymes of SARS coronavirus should pave the way for high-throughput screening approaches to identify candidate inhibitors in compound libraries.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The lipid droplet is an important organelle for hepatitis C virus production.

            The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nidovirus transcription: how to make sense...?

              Many positive-stranded RNA viruses use subgenomic mRNAs to express part of their genetic information. To produce structural and accessory proteins, members of the order Nidovirales (corona-, toro-, arteri- and roniviruses) generate a 3' co-terminal nested set of at least three and often seven to nine mRNAs. Coronavirus and arterivirus subgenomic transcripts are not only 3' co-terminal but also contain a common 5' leader sequence, which is derived from the genomic 5' end. Their synthesis involves a process of discontinuous RNA synthesis that resembles similarity-assisted RNA recombination. Most models proposed over the past 25 years assume co-transcriptional fusion of subgenomic RNA leader and body sequences, but there has been controversy over the question of whether this occurs during plus- or minus-strand synthesis. In the latter model, which has now gained considerable support, subgenomic mRNA synthesis takes place from a complementary set of subgenome-size minus-strand RNAs, produced by discontinuous minus-strand synthesis. Sense-antisense base-pairing interactions between short conserved sequences play a key regulatory role in this process. In view of the presumed common ancestry of nidoviruses, the recent finding that ronivirus and torovirus mRNAs do not contain a common 5' leader sequence is surprising. Apparently, major mechanistic differences must exist between nidoviruses, which raises questions about the functions of the common leader sequence and nidovirus transcriptase proteins and the evolution of nidovirus transcription. In this review, nidovirus transcription mechanisms are compared, the experimental systems used are critically assessed and, in particular, the impact of recently developed reverse genetic systems is discussed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                May 2008
                May 2008
                2 May 2008
                : 4
                : 5
                : e1000054
                Affiliations
                [1 ]Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
                [2 ]Section Electron Microscopy, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
                University of North Carolina, United States of America
                Author notes

                Conceived and designed the experiments: MV AG ES. Performed the experiments: MV SV KK ES. Analyzed the data: MV SV KK AM ES. Wrote the paper: MV AG ES.

                Article
                08-PLPA-RA-0055R2
                10.1371/journal.ppat.1000054
                2322833
                18451981
                277e277e-6861-46e4-ac7c-ed9b2e28dc56
                van Hemert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 January 2008
                : 1 April 2008
                Page count
                Pages: 10
                Categories
                Research Article
                Biochemistry/Macromolecular Assemblies and Machines
                Cell Biology/Membranes and Sorting
                Infectious Diseases/Viral Infections
                Molecular Biology
                Virology/Viral Replication and Gene Regulation

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article