3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Injecting human growth hormone as a performance-enhancing drug—perspectives from the United Kingdom

      ,
      Journal of Substance Use
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of muscle mass by growth hormone and IGF-I.

          Growth hormone (GH) is widely used as a performance-enhancing drug. One of its best-characterized effects is increasing levels of circulating insulin-like growth factor I (IGF-I), which is primarily of hepatic origin. It also induces synthesis of IGF-I in most non-hepatic tissues. The effects of GH in promoting postnatal body growth are IGF-I dependent, but IGF-I-independent functions are beginning to be elucidated. Although benefits of GH administration have been reported for those who suffer from GH deficiency, there is currently very little evidence to support an anabolic role for supraphysiological levels of systemic GH or IGF-I in skeletal muscle of healthy individuals. There may be other performance-enhancing effects of GH. In contrast, the hypertrophic effects of muscle-specific IGF-I infusion are well documented in animal models and muscle cell culture systems. Studies examining the molecular responses to hypertrophic stimuli in animals and humans frequently cite upregulation of IGF-I messenger RNA or immunoreactivity. The circulatory/systemic (endocrine) and local (autocrine/paracrine) effects of GH and IGF-I may have distinct effects on muscle mass regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growth hormone secretion during sleep.

            Plasma growth hormone (GH), insulin, cortisol, and glucose were measured during sleep on 38 nights in eight young adults. Blood was drawn from an indwelling catheter at 30-min intervals; EEG and electrooculogram were recorded throughout the night. In seven subjects, a plasma GH peak (13-72 mmug/ml) lasting 1.5-3.5 hr appeared with the onset of deep sleep. Smaller GH peaks (6-14 mmug/ml) occasionally appeared during subsequent deep sleep phases. Peak GH secretion was delayed if the onset of sleep was delayed. Subjects who were awakened for 2-3 hr and allowed to return to sleep exhibited another peak of GH secretion (14-46 mmug/ml). Peak GH secretion was not correlated with changes in plasma glucose, insulin, and cortisol. The effects of 6-CNS-active drugs on sleep-related GH secretion were investigated. Imipramine (50 mg) completely abolished GH peaks in two of four subjects, whereas chlorpromazine (30 mg), phenobarbital (97 mg), diphenylhydantoin (90 mg), chlordiazepoxide (20 mg), and isocarboxazid (30 mg) did not inhibit GH peaks. Altered hypothalamic activity associated with initiation of sleep results in a major peak of growth hormone secretion unrelated to hypoglycemia or changes in cortisol and insulin secretion.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Somatomedin: proposed designation for sulphation factor.

                Bookmark

                Author and article information

                Journal
                Journal of Substance Use
                Journal of Substance Use
                Informa UK Limited
                1465-9891
                1475-9942
                December 23 2009
                December 23 2009
                : 14
                : 5
                : 267-288
                Article
                10.3109/14659890903224383
                27911f03-16ca-4273-affd-3d26c4ffcc44
                © 2009
                History

                Comments

                Comment on this article