Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Global biodiversity: indicators of recent declines.

Science (New York, N.Y.)

Vertebrates, Trees, Time Factors, Population Dynamics, Plants, Internationality, International Cooperation, Humans, Extinction, Biological, Ecosystem, trends, Conservation of Natural Resources, Biodiversity, Anthozoa, Animals

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species' population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.

      Related collections

      Most cited references 15

      • Record: found
      • Abstract: found
      • Article: not found

      Fragmentation and flow regulation of the world's large river systems.

      A global overview of dam-based impacts on large river systems shows that over half (172 out of 292) are affected by dams, including the eight most biogeographically diverse. Dam-impacted catchments experience higher irrigation pressure and about 25 times more economic activity per unit of water than do unaffected catchments. In view of projected changes in climate and water resource use, these findings can be used to identify ecological risks associated with further impacts on large river systems.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data.

        Forest cover is an important input variable for assessing changes to carbon stocks, climate and hydrological systems, biodiversity richness, and other sustainability science disciplines. Despite incremental improvements in our ability to quantify rates of forest clearing, there is still no definitive understanding on global trends. Without timely and accurate forest monitoring methods, policy responses will be uninformed concerning the most basic facts of forest cover change. Results of a feasible and cost-effective monitoring strategy are presented that enable timely, precise, and internally consistent estimates of forest clearing within the humid tropics. A probability-based sampling approach that synergistically employs low and high spatial resolution satellite datasets was used to quantify humid tropical forest clearing from 2000 to 2005. Forest clearing is estimated to be 1.39% (SE 0.084%) of the total biome area. This translates to an estimated forest area cleared of 27.2 million hectares (SE 2.28 million hectares), and represents a 2.36% reduction in area of humid tropical forest. Fifty-five percent of total biome clearing occurs within only 6% of the biome area, emphasizing the presence of forest clearing "hotspots." Forest loss in Brazil accounts for 47.8% of total biome clearing, nearly four times that of the next highest country, Indonesia, which accounts for 12.8%. Over three-fifths of clearing occurs in Latin America and over one-third in Asia. Africa contributes 5.4% to the estimated loss of humid tropical forest cover, reflecting the absence of current agro-industrial scale clearing in humid tropical Africa.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Pinpointing and preventing imminent extinctions.

          Slowing rates of global biodiversity loss requires preventing species extinctions. Here we pinpoint centers of imminent extinction, where highly threatened species are confined to single sites. Within five globally assessed taxa (i.e., mammals, birds, selected reptiles, amphibians, and conifers), we find 794 such species, three times the number recorded as having gone extinct since 1500. These species occur in 595 sites, concentrated in tropical forests, on islands, and in mountainous areas. Their taxonomic and geographical distribution differs significantly from that of historical extinctions, indicating an expansion of the current extinction episode beyond sensitive species and places toward the planet's most biodiverse mainland regions. Only one-third of the sites are legally protected, and most are surrounded by intense human development. These sites represent clear opportunities for urgent conservation action to prevent species loss.
            Bookmark

            Author and article information

            Journal
            20430971
            10.1126/science.1187512

            Comments

            Comment on this article