4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metabolic acidosis and skeletal muscle adaptation to low protein diets in chronic uremia

      , , ,
      Kidney International
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To maintain nitrogen equilibrium when prescribed a low protein diet (LPD), metabolic adaptations occur involving a reduction protein turnover, principally decreased muscle protein degradation. Studies suggest that in patients with chronic renal failure (CRF) uncomplicated by metabolic acidosis (MA), these adaptive responses are intact. Because MA stimulates muscle proteolysis, this study examined the hypothesis that in CRF complicated by MA, the adaptation to LPD may be impaired, inducing a nitrogen wasting state. Six adults with CRF (mean GFR: 12.8 +/- 1.5 ml/min) and MA (mean serum bicarbonate: 17.0 +/- 1.0 mM/liter) receiving an unrestricted diet (protein intake: 1.2 g/kg body wt/day) were converted to an isocaloric LPD (protein: 0.6 g/kg body wt/day). Two weeks later total urinary nitrogen losses decreased, but skeletal muscle protein catabolism (SMPC), assessed from the urinary 3-methyl histidine:creatinine ratio, increased, demonstrating impairment in the adaptive down-regulation of SMPC. The LPD was continued for a further two weeks and MA was corrected with oral sodium bicarbonate (mean serum bicarbonate: 24.3 +/- 1.2 mM/liter). Correcting MA decreased SMPC to a level below that measured prior to protein restriction. The decreased SMPC was paralleled by further decreases in urinary nitrogen losses, confirming that MA impaired nitrogen utilization. It is concluded that MA can override the expected metabolic adaptive response to a LPD. The associated impairment of nitrogen utilization not only diminishes the efficacy of the diet, but also accelerates the loss of lean body mass.

          Related collections

          Author and article information

          Journal
          Kidney International
          Kidney International
          Springer Nature
          00852538
          October 1991
          October 1991
          : 40
          : 4
          : 779-786
          Article
          10.1038/ki.1991.275
          1745030
          279c2d11-e4da-4fbb-b7bf-6096f88cabb0
          © 1991

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article