29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent Insights into the Role of Unfolded Protein Response in ER Stress in Health and Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Unfolded stress response (UPR) is a conserved cellular pathway involved in protein quality control to maintain homeostasis under different conditions and disease states characterized by cell stress. Although three general schemes of and genes induced by UPR are rather well-established, open questions remain including the precise role of UPR in human diseases and the interactions between different sensor systems during cell stress signaling. Particularly, the issue how the normally adaptive and pro-survival UPR pathway turns into a deleterious process causing sustained endoplasmic reticulum (ER) stress and cell death requires more studies. UPR is also named a friend with multiple personalities that we need to understand better to fully recognize its role in normal physiology and in disease pathology. UPR interacts with other organelles including mitochondria, and with cell stress signals and degradation pathways such as autophagy and the ubiquitin proteasome system. Here we review current concepts and mechanisms of UPR as studied in different cells and model systems and highlight the relevance of UPR and related stress signals in various human diseases.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          ER stress-induced cell death mechanisms.

          The endoplasmic-reticulum (ER) stress response constitutes a cellular process that is triggered by a variety of conditions that disturb folding of proteins in the ER. Eukaryotic cells have developed an evolutionarily conserved adaptive mechanism, the unfolded protein response (UPR), which aims to clear unfolded proteins and restore ER homeostasis. In cases where ER stress cannot be reversed, cellular functions deteriorate, often leading to cell death. Accumulating evidence implicates ER stress-induced cellular dysfunction and cell death as major contributors to many diseases, making modulators of ER stress pathways potentially attractive targets for therapeutics discovery. Here, we summarize recent advances in understanding the diversity of molecular mechanisms that govern ER stress signaling in health and disease. This article is part of a Special Section entitled: Cell Death Pathways. © 2013.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages.

            Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1alpha and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1alpha by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              XBP1 Promotes Triple Negative Breast Cancer By Controlling the HIF1 α Pathway

              Cancer cells induce a set of adaptive response pathways to survive in the face of stressors due to inadequate vascularization 1 . One such adaptive pathway is the unfolded protein (UPR) or endoplasmic reticulum (ER) stress response mediated in part by the ER-localized transmembrane sensor IRE1 2 and its substrate XBP1 3 . Previous studies report UPR activation in various human tumors 4-6 , but XBP1's role in cancer progression in mammary epithelial cells is largely unknown. Triple negative breast cancer (TNBC), a form of breast cancer in which tumor cells do not express the genes for estrogen receptor, progesterone receptor, and Her2/neu, is a highly aggressive malignancy with limited treatment options 7, 8 . Here, we report that XBP1 is activated in TNBC and plays a pivotal role in the tumorigenicity and progression of this human breast cancer subtype. In breast cancer cell line models, depletion of XBP1 inhibited tumor growth and tumor relapse and reduced the CD44high/CD24low population. Hypoxia-inducing factor (HIF)1α is known to be hyperactivated in TNBCs 9, 10 . Genome-wide mapping of the XBP1 transcriptional regulatory network revealed that XBP1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that regulates the expression of HIF1α targets via the recruitment of RNA polymerase II. Analysis of independent cohorts of patients with TNBC revealed a specific XBP1 gene expression signature that was highly correlated with HIF1α and hypoxia-driven signatures and that strongly associated with poor prognosis. Our findings reveal a key function for the XBP1 branch of the UPR in TNBC and imply that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                10 May 2017
                2017
                : 5
                : 48
                Affiliations
                [1] 1Medicum, Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki Helsinki, Finland
                [2] 2Minerva Foundation Institute for Medical Research Helsinki, Finland
                [3] 3Division of Child Psychiatry, Helsinki University Central Hospital Helsinki, Finland
                [4] 4Department of Pathophysiology, University of Tartu Tartu, Estonia
                [5] 5Department of Reproductive Biology, Estonian University of Life Sciences Tartu, Estonia
                Author notes

                Edited by: Cesare Indiveri, University of Calabria, Italy

                Reviewed by: Luca Ulianich, Consiglio Nazionale Delle Ricerche, Italy; Roberto Pérez-Torrado, Consejo Superior de Investigaciones Científicas, Spain

                *Correspondence: Dan Lindholm dan.lindholm@ 123456helsinki.fi

                This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2017.00048
                5423914
                28540288
                279de3c4-3279-405a-889b-a0a8976d5dcc
                Copyright © 2017 Lindholm, Korhonen, Eriksson and Kõks.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 06 March 2017
                : 13 April 2017
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 169, Pages: 16, Words: 14440
                Funding
                Funded by: Suomen Akatemia 10.13039/501100002341
                Categories
                Cell and Developmental Biology
                Review

                upr,er stress,cell signaling,gene regulation,misfolded protein,human disease

                Comments

                Comment on this article